

VACCINES AND INNOVATIONS IN FACILITY INFECTION CONTROL TO PREVENT NEONATAL SEPSIS

February 26, 2020, PACCARB Meeting

Padmini Srikantiah, MD MPH
Antimicrobial Resistance Strategy Lead
Global Health
Bill & Melinda Gates Foundation
CONFIDENTIAL

FOUNDATION PERSPECTIVE ON ANTIMICROBIAL RESISTANCE

- Our interest in AMR relates to our current health strategies in developing countries
 - Focused on supporting the development of transformative tools to reduce mortality and disease burden among the world's most vulnerable populations
 - Appropriate antibiotic use has the power to save lives in these populations
- The threat of AMR reinforces the importance of prevention of infections – which is a core focus of foundation work

AMR STRATEGY: FOCUS AREAS FOR INVESTMENT

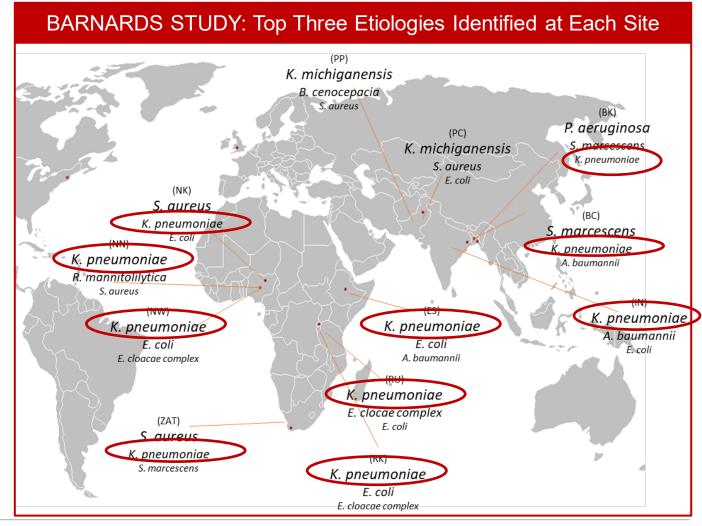
AMR Strategy Focus

- Focus on prevention of infections and the associated mortality through vaccines, monoclonal Ab, and microbiome approaches
 - Focus on neonatal sepsis
 - Continued vaccine development and delivery efforts for enteric disease, TB, HIV, malaria

Key Investments

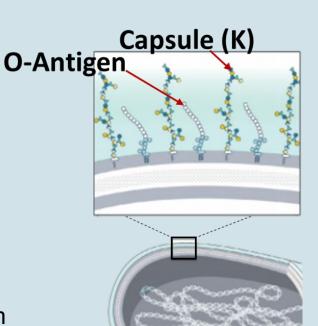
- Surveillance and evidence generation to understand the etiologies and burden of illness
- Product development investments, including via CARB-X:
 - Vaccines

- Monoclonal antibodies
- Microbiome approaches
- Innovations in infection prevention and control


BURDEN OF KLEBSIELLA PNEUMONIAE IN NEONATAL SEPSIS IN LOW AND MIDDLE INCOME COUNTRIES

BARNARDS Study

- Enrolled 35,040 mothers at delivery at 12 sites in 7 countries
 - Nigeria, Rwanda, Ethiopia, South Africa, Pakistan, Bangladesh, India
- Of 36,348 enrolled infants, 2,311 infants had blood culture confirmed sepsis
 - K. pneumoniae most common organism isolated


CHAMPS Surveillance Platform

- *K. pneumoniae* accounts for:
 - 30% of neonatal infectious deaths
 - In causal chain of 16% of all neonatal deaths, and causes both early and late onset (hospital-acquired) illness

KLEBSIELLA PNEUMONIAE: POTENTIAL MATERNAL VACCINE TARGET TO PREVENT NEONATAL SEPSIS

- 8 lipopolysaccharide (LPS) O-antigens and 77 capsular K antigens are potential targets for conjugate vaccine
- Whole genome sequencing of 258 *K. pneumoniae* neonatal sepsis isolates from BARNARDS* study:
 - 98% of sepsis isolates from serogroups: O1, O2, O3, O4
 - •81% of isolates from 16 K serogroups
- Key data gaps:
 - Characterization of *K. pneumoniae* serogroups in neonatal sepsis from additional geographies
 - Evaluate for infant correlate of protection for K. pneumoniae

KLEBSIELLA PNEUMONIAE: A VACCINE TARGET IN OTHER POPULATIONS

- Most common O serogroups in adult nosocomial infections: O1, O2, O3, O5
- Target populations: Elective surgery patients, patients discharged to long-term care facilities

Type of Vaccine	Antigen
Conjugate vaccine	O1, O2, O3, O4 linked to <i>Pseudomonas aeruginosa</i> flagellin protein
	Bioconjugate vaccine targeting K1, K2
	Semi-synthetic conjugate vaccine targeting O1, O2
Multiple Antigen Presenting System (MAPS)	O1, O2, O3, O5, MrkA

Key questions:

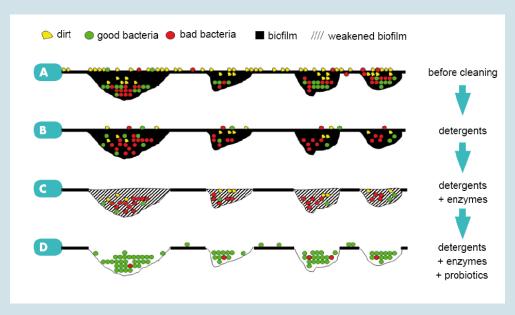
- Do K antigens mask LPS O antigens? Is that a barrier to a vaccine targeting O serogroups?
- Is a high valency conjugate vaccine required?
- What is required for protective immunity in infants?

CONTAMINATED SURFACES CONTRIBUTE TO HEALTHCARE ASSOCIATED INFECTIONS, INDIA DATA

Rapid survey of environmental microbial burden in a neonatal ward – India: Results from one day in a month-long survey

Item sampled	Final culture results	
Resuscitation mask	Klebsiella, Proteus, Enterococcus	
Laryngoscope	Acinetobacter, E. coli	
Thermometer	Coagulase negative (CN) Staphylococcus	
Neonate bed surface	CN Staphylococcus, Acinetobacter, Enterobacter, Klebsiella	
Weighing balance	No pathogen isolated	
Oxygen hood	Acinetobacter, Klebsiella, CN Staphylococcus	
Transportation trolley	Klebsiella, Enterococcus, CN Staphylococcus	
Feed preparation surface	Enterococcus	
Feeding tray	Acinetobacter	
Stethoscope	No growth	

Frequency of surface contamination correlates with frequency of hand and/or glove contamination of healthcare personnel

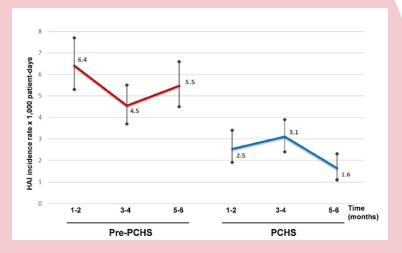

NOVEL APPROACHES TO HOSPITAL SURFACES

Approach	Category	Intervention	Mechanism	Challenges		
Disinfect the surface disinfectants No touch disinfectants		Hydrogen peroxide	Oxidative cell death	Risk of burns		
	disinfectants	Electrolyzed water	Free radical disinfection	Limited microbial reduction		
	UV light	Severs molecular DNA → microbicidal death	Cost, terminal cleaning only, surface must be in line of UV light			
		High intensity narrow spectrum light	Stimulate intracellular porphyrins → cell death	Cost, light must remain on		
		Ozone	Oxidative cell death	Limited and variable data		
		Hydrogen peroxide mist	Oxidative cell death	Cost, injury risk, terminal cleaning only		
Alter the	Nanocoatings	Organosilanes	Disrupt cell membrane	Needs applications every 3 months		
surface	Metals	Silver, Copper	Toxic to microbes via multiple mechanisms	Cost, potential for resistance		
	Topography	Ordered micropatterns	Prevent bacterial adhesion	Limits on types of materials		
Don't disinfect the surface	Microbial management	Probiotic infection control	Non pathogenic bacteria reset the microbial environment	Requires manual application		
		Bacteriophage	Targeted at specific pathogens	Focused application		

PROBIOTIC INFECTION CONTROL

Approach:

- Use non-pathogenic probiotic bacteria to colonize hard surfaces
- Counteract proliferation of pathogenic species via the principle of competitive exclusion



Product:

 Chrisal: detergent with food grade spores of Bacillus pumilus + megaterium + subtilis

Pre-post intervention trial in six hospitals in Italy, 2016-2017

- HAI incidence decreased from 4.8% to 2.3% (OR 0.44, 95% CI 0.35 -0.54).
- Surface pathogen decreased 83%

Cluster Randomized Crossover Trial, Charite Berline, 2017-2018

- No significant difference in HAI rate between 3 arms
- Overall incidence much lower than expected (estimated 5%): study was likely underpowered.

Overall infection incidence rate	1.7%
Probiotic cleaning	1.9%
Disinfection cleaning	1.5%
Soap-based cleaning	1.6%

^{*}Unpublished; Presented at ICPIC 2019, Geneva

