

Machine Learning and Predictive Models in Hepatitis C

Akbar K. Waljee, MD, Msc Associate Professor of Internal Medicine University of Michigan Health Systems Ann Arbor VA Center of Excellence

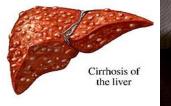
Goals of the Talk

- Introduction to a Clinical Problem
- How can Machine Learning help?
- Examples in HCV:
 - HALT-C/Michigan Medicine Cohorts
 - VA Cohort
- Implications for Medicaid patients

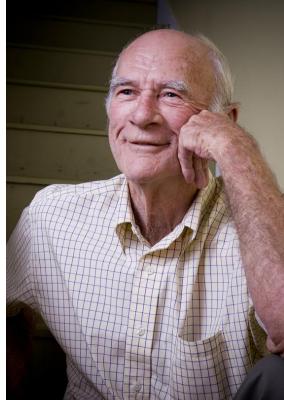
Mr. S

- 64 yo male
- HCV RNA+

 Received blood transfusion in 1978



• Early stage cirrhosis



MICHIGAN MEDICINE

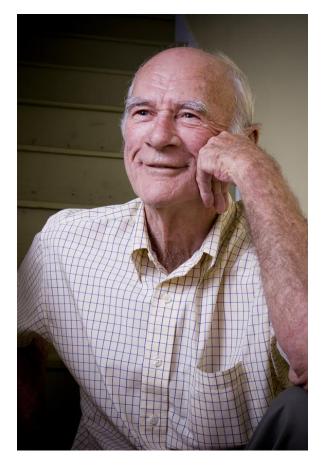
VERSITY OF MICHIGAN

• 23 yo female

• HCV RNA+

- Active IVDU
- Recently acquired HCV

Do you treat them the same?

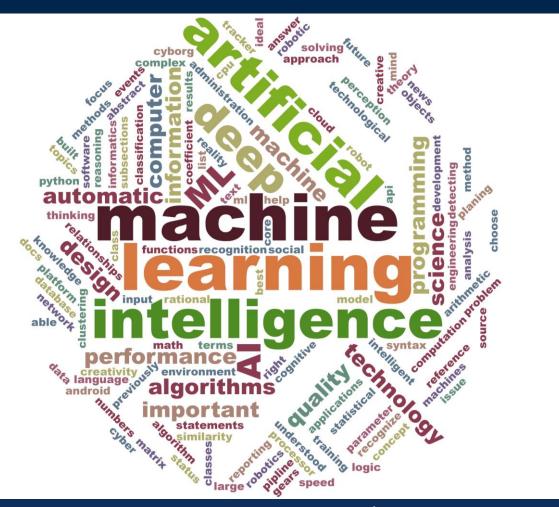


Individualize Treatme

MICHIGAN MEDICINE

Y OF MICHIGAN

What is Machine Learning?



Division of Gastroenterology & Hepatology

CHIGAN MEDICINE

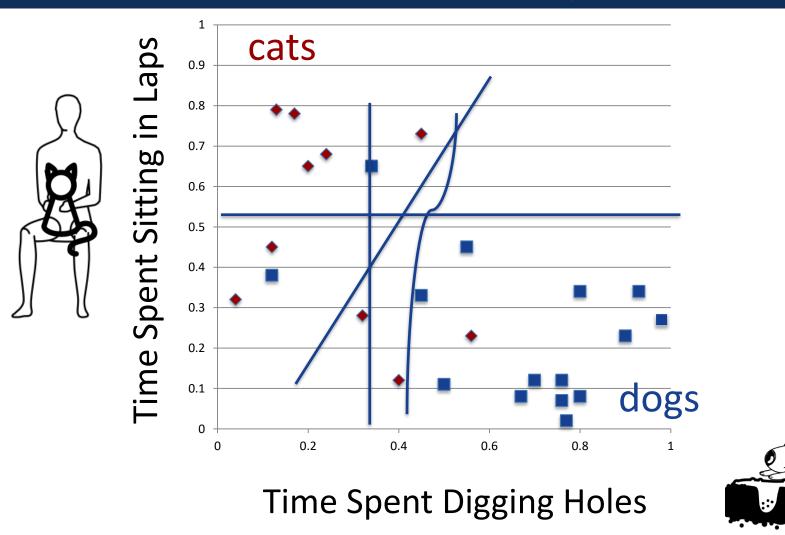
UNIVERSITY OF MICHIGAN

Real World Applications

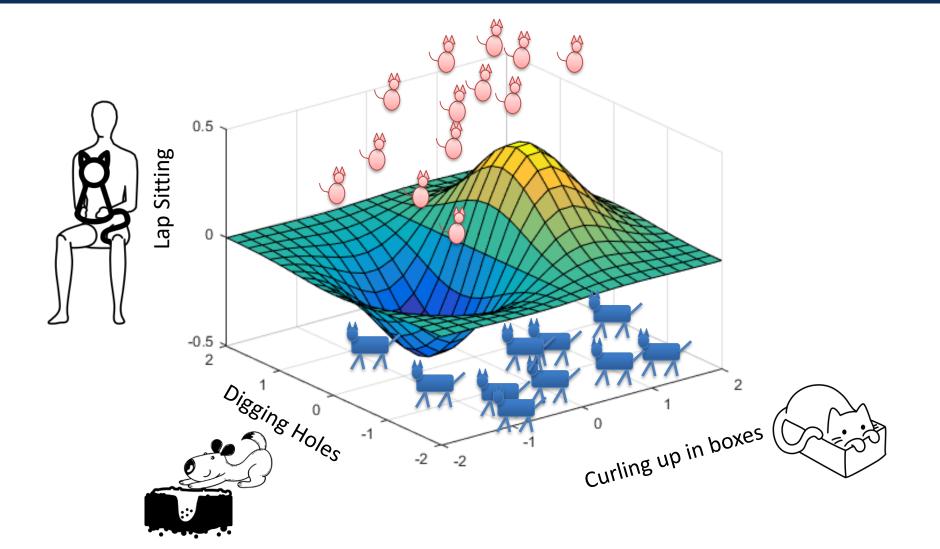
- Large digital datasets
- Known outcomes
- Identify patterns in data to predict the future
 - Clicking on an ad
 - Purchasing items
 - Signing up for a credit card
 - Switching cell phone providers

NETFLIX

Can you differentiate? Cat vs. Dog



3 Variables = 3 Dimensions

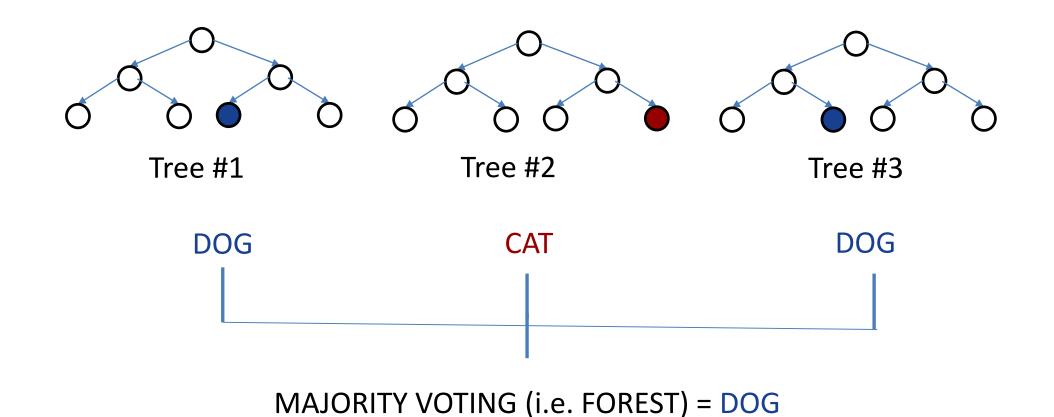


What is Random Forest?

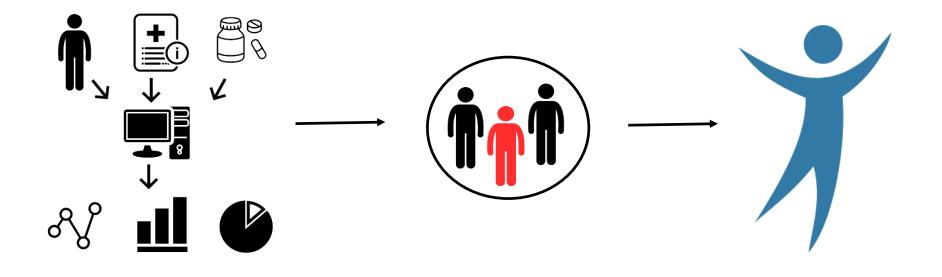
- A modern Machine Learning method
- Computer-based algorithm which uses decision trees to classify outcomes. e.g. Cat or Dog
- Can incorporate many variables and interactions
 - Identifies most important variables for prediction
 - "No pre-conceived notions"

What is Random Forest?

Dataset



How can we improve care for an individual?



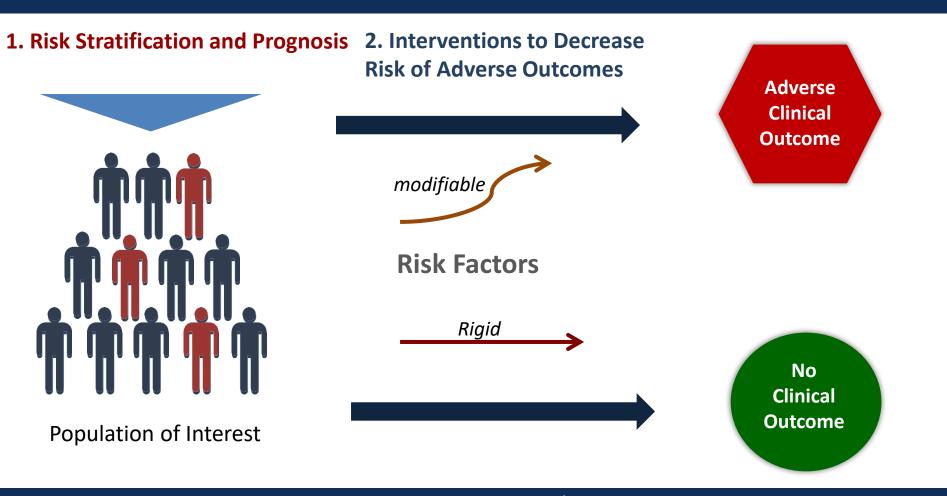
Example: Liver-Related Clinical Outcomes

Evaluating liver-related clinical outcomes in Hepatitis C

Konerman, et al. PLOS One 2017

Division of Gastroenterology & Hepatology

Topical Research Questions of Interest



DICINE

 $\Pi \mathbf{i} \mathbf{A} \mathbf{N}$

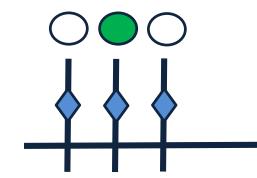
VERSITY OF MICHIGAN

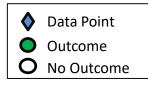
Predictive Models for Risk of Clinical Outcomes

- Methods:
 - Develop Longitudinal Models on HALT-C for a composite clinical outcome
 - Validate 1007 HCV patients at Michigan Medicine
 - Predict outcomes at 1 and 3 years

Patient Demographics

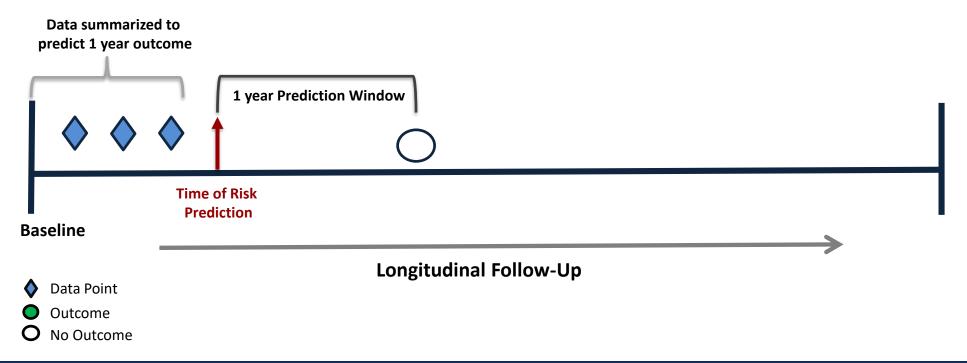
Variable	Summary statistics					
	HALT-C Cohort (N=1050)	Michigan Medicine Cohort (N=1007)				
Age (median, IQR)	49 (46-54)	49.4 (44.3-54.3)				
Male	745 (71%)	612 (61%)				
Race (% White)	752 (71.6%)	636 (80.1%)				



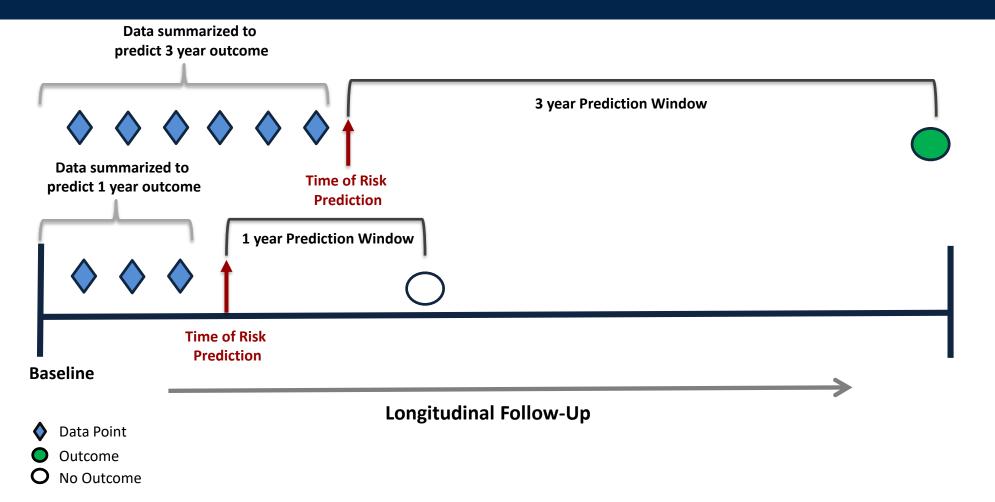


Division of Gastroenterology & Hepatology

Approach

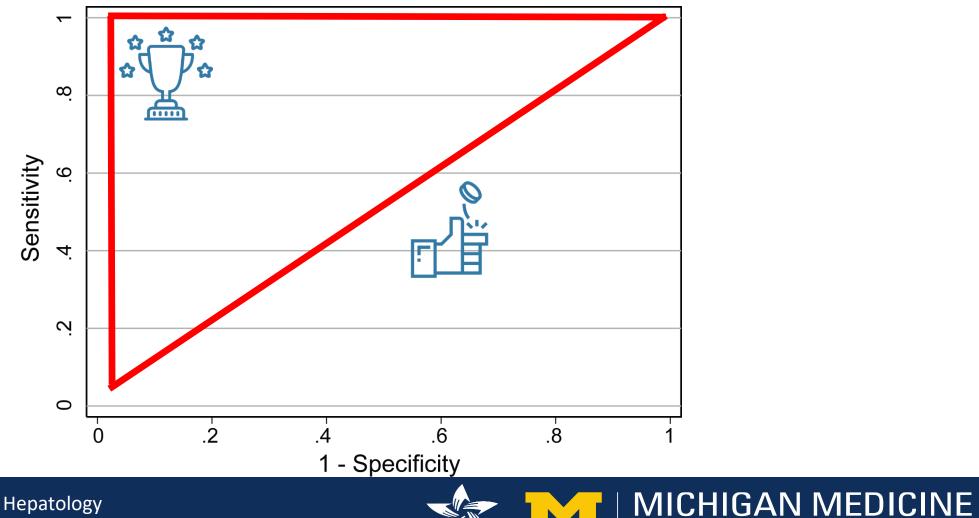


Approach



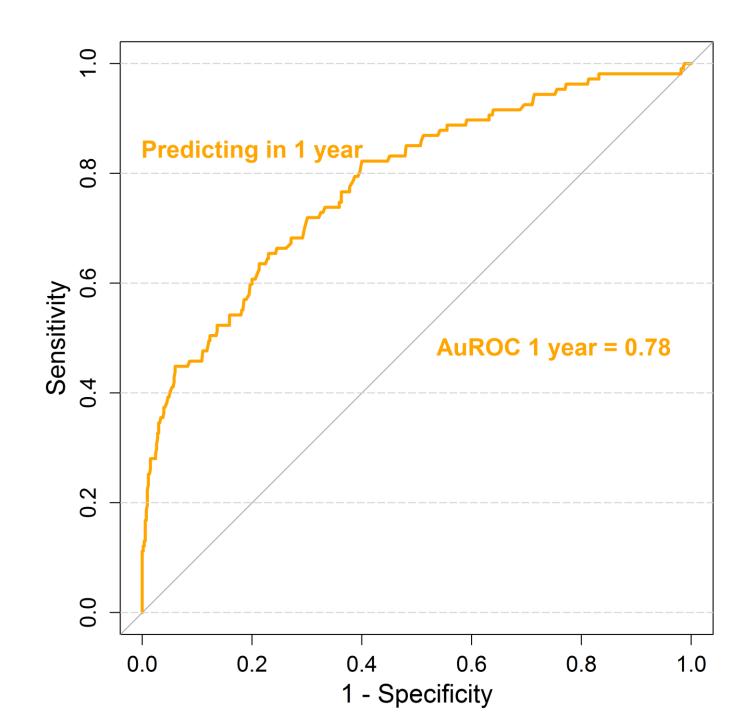
Division of Gastroenterology & Hepatology

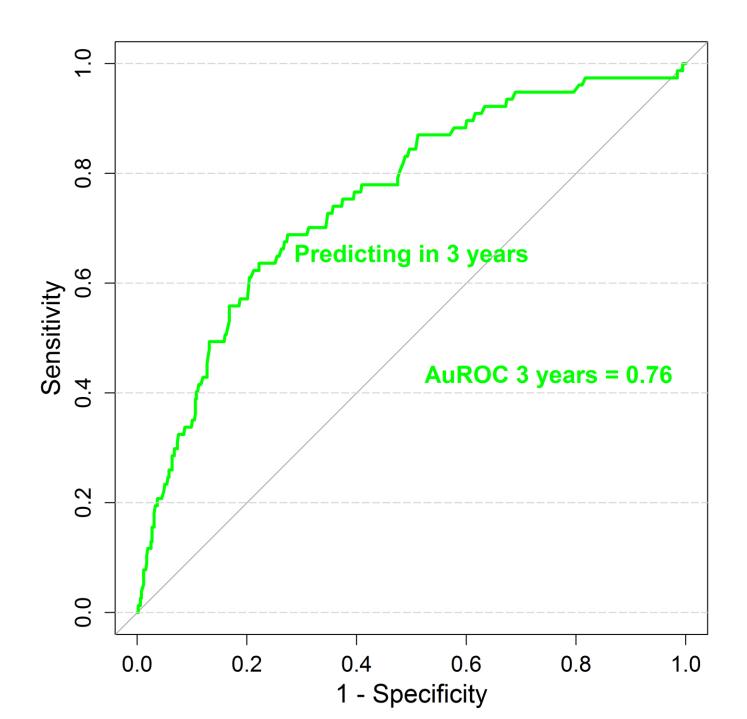
Results

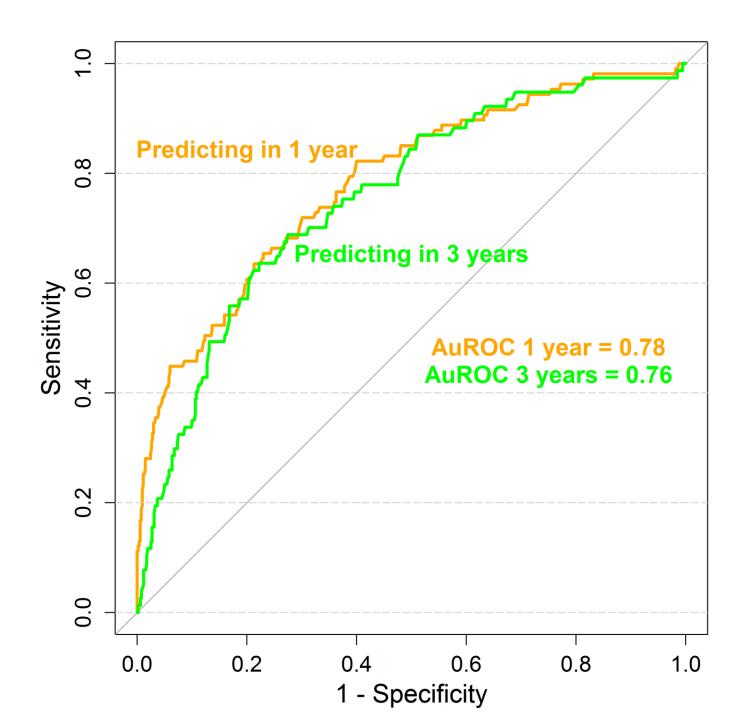


Division of Gastroenterology & Hepatology

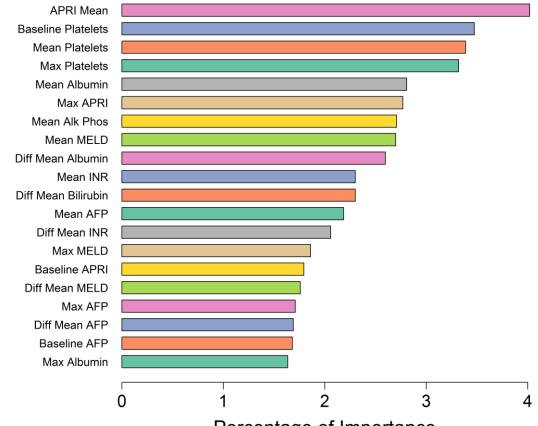
UNIVERSITY OF MICHIGAN







Variable Importance



Percentage of Importance

MICHIGAN MEDICINE

UNIVERSITY OF MICHIGAN

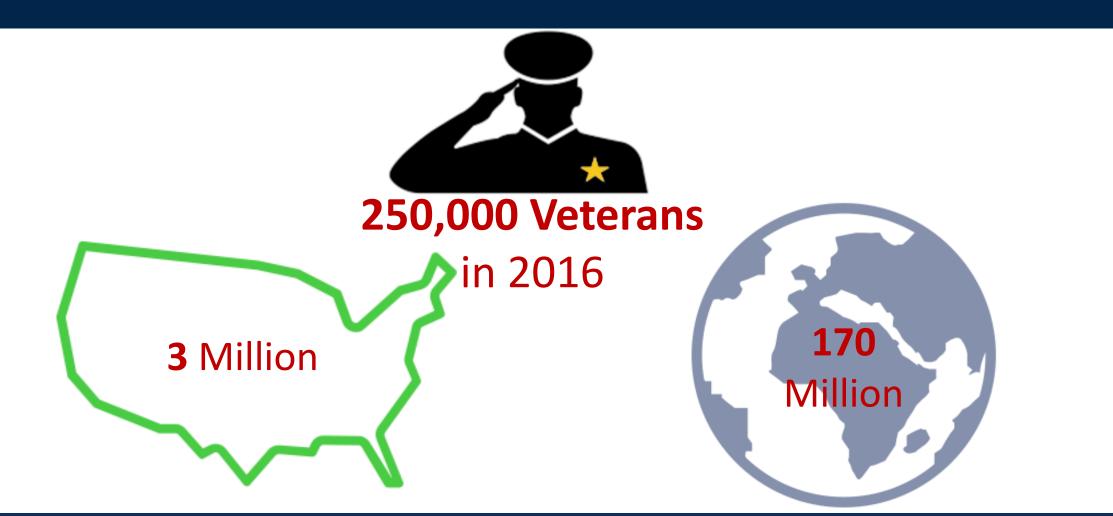
Example: Progression of Disease

Evaluating progression to Cirrhosis in Veterans

Konerman, et al. PLOS One 2019

Division of Gastroenterology & Hepatology

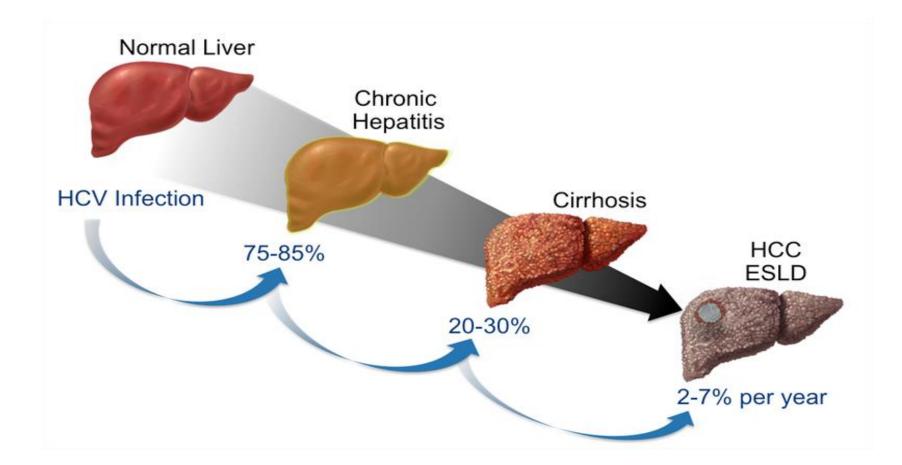
HCV Models in VA Data



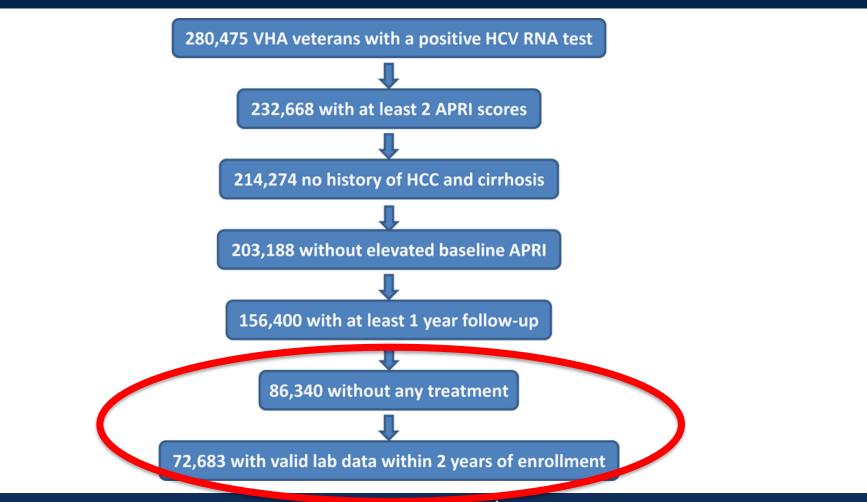
MICHIGAN MEDICINE

VERSITY OF MICHIGAN

Progression



Cohort



Division of Gastroenterology & Hepatology

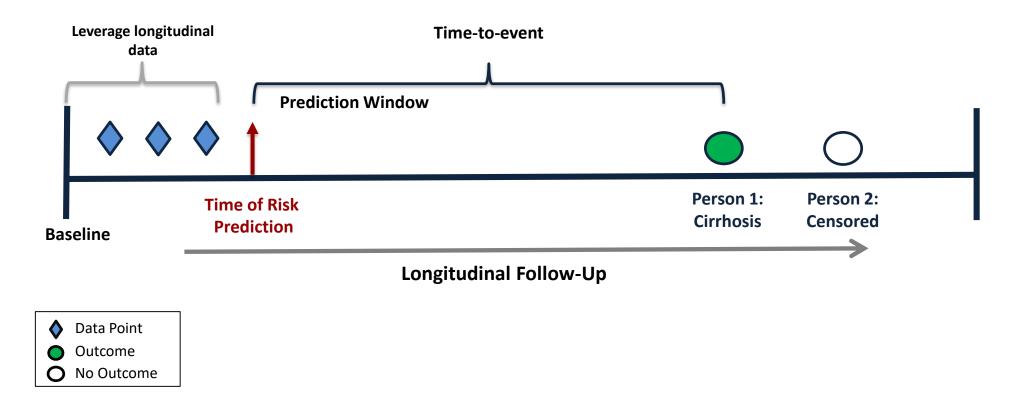
MICHIGAN MEDICINE UNIVERSITY OF MICHIGAN

Patient Demographics

• Large heterogeneous population, primarily male

Variable	Summary statistics			
Age (mean, sd)	52.84 (8.74)			
Male	70,377 (96.8%)			
Race (% White)	35,216 (52.9%)			

Approach



Results

							-	
Time	N	% Events	Model	AuRO	SN	SP	PPV	NPV
1 year 18896	18896	896 0.036	CS Cox	0.807	0.79	0.71	0.11	0.99
			CS Boosting	0.817	0.77	0.73	0.11	0.99
			LGT Cox	0.828	(<mark>.</mark> 75	0.76	0.10	0.99
		LGT Boosting	0.838	C 76	0.77	0.11	0.99	
3 years 146	14605	0.112	CS Cox	0.784	0 73	0.72	0.25	0.95
			CS Boosting	0.799	0 76	0.71	0.27	0.95
			LGT Cox	0.804	0 75	0.74	0.27	0.96
			LGT Boosting	0.815	0 <mark>.76</mark>	0.73	0.28	0.96
5 years 11334	11334	0.206	CS Cox	0.775	.74	0.70	0.41	0.90
			CS Boosting	0.790	0.75	0.70	0.42	0.91
			LGT Cox	0.794	0.75	0.71	0.42	0.91
		LGT Boosting	0.805	0.73	0.74	0.41	0.92	

MICHIGAN MEDICINE UNIVERSITY OF MICHIGAN

HCV Treatment Approaches

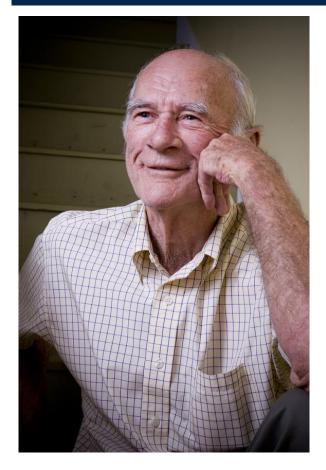
Population Health Approach

- Population Level
- Untargeted
- Only need high level patient data
- Quickly scalable (available data infrastructure?)
- Economical in resource limited setting?

Precision Health Approach

- Patient Level
- Targeted
- Need granular/sparse patient data
- Scalable but need to build data infrastructure
- Optimizes targeted health and value for patients and payers

Value of Precision Health



Targeted Treatment

CHIGAN MEDICINE

VERSITY OF MICHIGAN

Division of Gastroenterology & Hepatology

Value of Precision Health

Potential alternative treatment approaches in HCV Medicaid patients:

• Limited Resources

- » Navigation for those not seeking care
- » IVDU

• High-Risk HCV Targets

- » Non-adherence, more intensive monitoring
- » Reinfection

• Post Treatment Monitoring

» Improve treatment transition

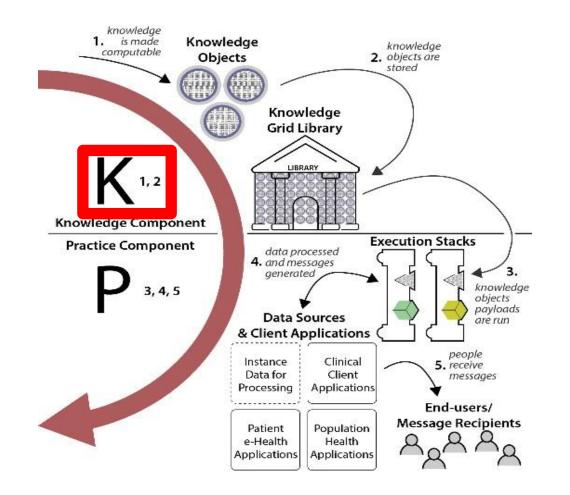
MDHHS and University of Michigan

The Collaboration

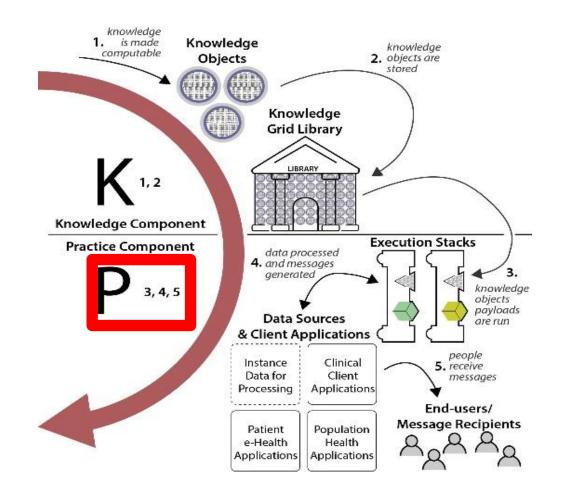
David Neff, DO Chief Medical Director, MDHHS

Division of Gastroenterology & Hepatology

K-GRID is the "K" Component



MTOP is the "P" Component



Proposed Focus Areas to Develop Use Cases

- 1. Opioids
- 2. Hepatitis C
- 3. Rare Disease Registries (ie, spinal muscular atrophy, aka SMA)
- 4. Social Determinants and Adverse Childhood Experiences (ACE's)
- 5. Superutilizors
- 6. Diabetes
- 7. Heart Disease

Thoughts for the group:

- What barriers do you foresee with these approaches?
 - Data Access
 - How to deliver care to those not seeking care
 - Getting Prediction models into practice
 - What do patients think of treatment policies
- What alternatives should we be considering?

THANK YOU

ACCMR