

Antimicrobial Drug Use In Companion Animals

Professor of Epidemiology and Infection Control / Colorado State University Professor of Epidemiology / Colorado School of Public Health Director of Infection Control / James L. Voss Veterinary Teaching Hospital

colorado school of public health

Paul Morley, DVM, PhD, DACVIM

- Professor of Epidemiology and Infection Control / Colorado State University
- Professor of Epidemiology / Colorado School of Public Health
- Director of Infection Control / James L. Voss Veterinary Teaching Hospital
 - Control of Resistant Bacterial Infections and Promote AMD Stewardship
- Research Focus: Infectious Diseases and Antimicrobial Resistance
 - Food producing animals, especially cattle
 - Companion Animals
- American College of Veterinary Internal Medicine
 - Chair & Author: Consensus Statements on Antimicrobial Drug Use

Antimicrobial Drug Use in Companion Animals

- 1. What are your primary disease challenges that result in antibiotics being used for prevention, control, or treatment?
- 2. What are non-antibiotic control measures used for these disease challenges?
- 3. What antibiotic control measures are used for these diseases?

What are your primary disease challenges that result in antibiotics being used for prevention, control, or treatment?

- Companion Animals = Dogs, Cats, Horses (mainly)
- Much more likely to mimic AMD uses found in humans in comparison to food producing animals
 - Examples: Legal, but off-label use of drugs such as Carbapenems, Chloramphenicol, Linezolid, Tigecycline, Vancomycin, Quinupristin/Dalfopristin
- People Are Much more likely to have direct and indirect contact with companion animals in comparison to food producing animals
 - Food Safety Control Measures limit foodborne exposures
 - Rare physical exposure to food animals in modern society
 - Limited potential for indirect (environmental) exposures to food animals

Common

http://www.atwphoto.com/CowLick.jpg

1. What are disease challenges that result in antibiotics being used for prevention, control, or treatment?

2001 Mail Survey

 AVMA veterinarians randomly selected from throughout U.S. from 7 Self-declared practice categories

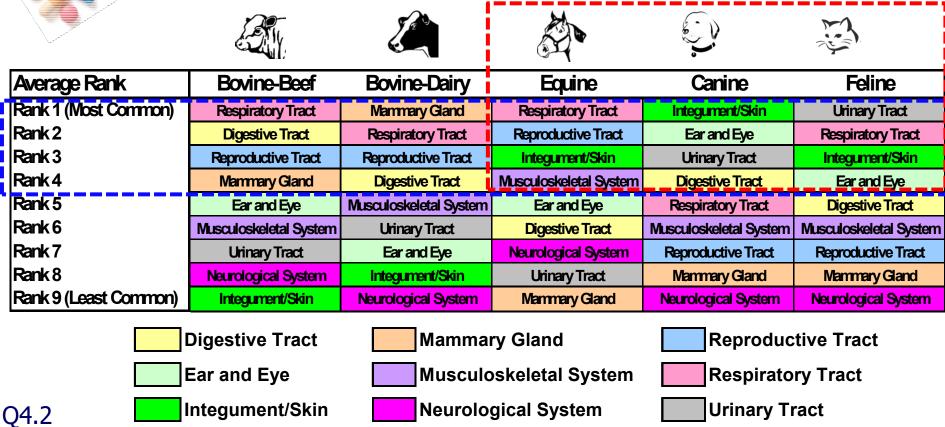
Large animal exclusive - LGANEXC

Large animal predominant - LGANPRED

Other private practice - OTHER

Mixed - MIXED

Equine exclusive - EQUINE

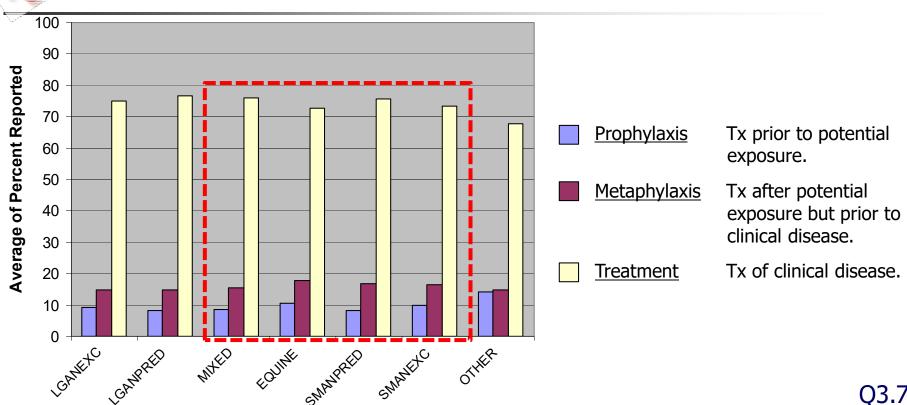

Small Animal predominant - SMANPRED

Small Animal exclusive - SMANEXC

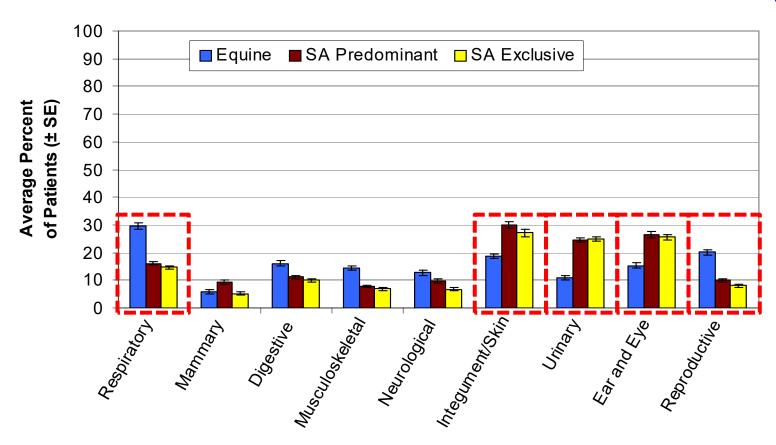
Response = 4,652 / 12,955 (35.4%)

Pick One Species: How Commonly Did You Treat With AMDs for Problems in These Body Systems During the Past Year?

2. What are non-antibiotic control measures used for these disease challenges?

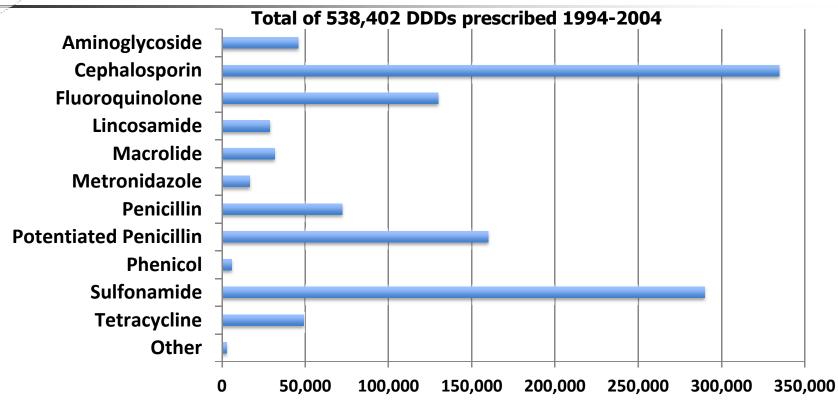

- Limited...
- Respiratory vaccines imperfect efficacy
- Novel Treatments for Atopy/Skin infections (ex.)
 - Monoclonal antibody that specifically targets and neutralizes interleukin-31 (IL-31)
 - CYTOPOINT™ Zoetis
 - Vaccination with liposome-nucleic acid complexes
 - Immunostimulatory
- Urinary nothing currently
- Reproductive tract currently limited

3. What antibiotic control measures are used for these diseases?



Reasons for Antimicrobial Drug Prescriptions (past 12 mo)

Patients in Which Perceived AMR Affects Choice of Drugs


Summary of AMD Use in Hospitalized Patients James L. Voss Veterinary Teaching Hospital (1994-2007)

Species	¹ Admissions	² Received AMD	³ Percent AMD	⁴ DDD _{SUM}	⁵ DDD _{UD}	⁶ DDD _{MED}	⁷ DDDHoD _{MED}
Equine	13,929	8,105	58.2%	184,675	243	1.27	0.14
Canine	44,603	24,329	54.5%	324,636	428	2.36	0.47
Feline	12,245	3,868	31.6%	39,946	53	3.29	1.10

- *1. Number of patients admitted to the hospital for at least one day.
- 2. Number of patients that received at least one antimicrobial drug (AMD) and were hospitalized at least one day.
- *3. Percent of hospitalized patients that received at least one AMD.
- 4. The sum of the Defined Daily Dose for patients receiving antimicrobials and hospitalized at least one day.
- *5. Usage Density: Defined Daily Dose per 100 total patients hospitalized for at least one day.
- *6. Median Defined Daily Dose for patients receiving antimicrobials and hospitalized for at least one day.
 - 7. Defined Daily Dose per Hospitalized Day for patients receiving antimicrobials and hospitalized for at least one day.

DDDs Prescribed, by Drug Class JLV-VTH Inpatients (1994-2007)

Inpatients Receiving AMD Prescriptions, by Species and Drug Class (1994-2007)

- **Canine** (n=24,329)
 - 50.1% cephalosporin (n=12,194)
 - 8.6% potentiated penicillin (n=2,095)
 - 4.5% cephalosporin/potentiated penicillin (n=1,090)
- **Feline** (n=3,868)
 - 30.6% potentiated penicillin (n=1,185)
 - 26.7% cephalosporin (n=1,032)
 - 9.6% cephalosporin/potentiated penicillin (n=371)
- **Equine** (n=8,105)
 - 17.4% aminoglycoside/penicillin (n=1,413)
 - 11.3% penicillin (n=917)
 - 11.3% sulfonamide (n=679)
 - 7.6% aminoglycoside/penicillin/sulfonamide (n=619)

Treatment Guidelines & Consensus Statements

2005

Antimicrobial Drug Use in Veterinary Medicine

Paul S. Morley, Michael D. Apley, Thomas E. Besser, Derek P. Burney, Paula J. Fedorka-Cray, Mark G. Papich, Josie L. Traub-Dargatz, and J. Scott Weese 2015

ACVIM Consensus Statement on Therapeutic Antimicrobial Use in Animals and Antimicrobial Resistance

J.S. Weese, S. Giguère, L. Guardabassi, P.S. Morley, M. Papich, D.R. Ricciuto, and J.E. Sykes

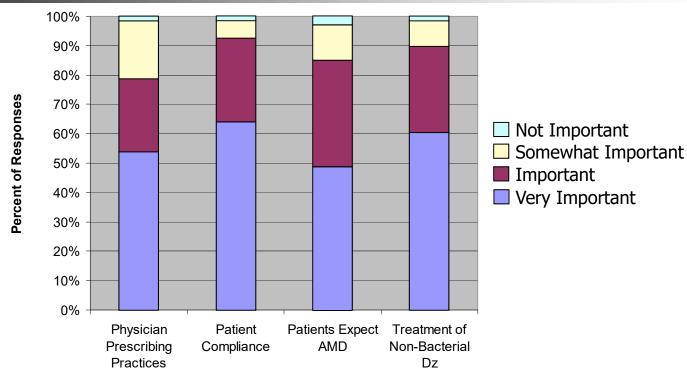
Vet Dermatol 2014; 25: 163-e43

DOI: 10.1111/vde.12118

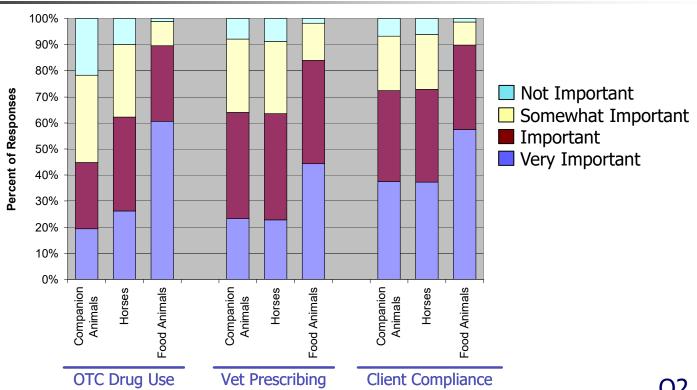
Guidelines for the diagnosis and antimicrobial therapy of canine superficial bacterial folliculitis (Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases)

Andrew Hillier*, David H. Lloyd†, J. Scott Weese‡, Joseph M. Blondeau§, Dawn Boothe¶, Edward Breitschwerdt**, Luca Guardabassi††, Mark G. Papich**, Shelley Rankin‡‡, John D. Turnidge§§ and Jane E. Sykes¶¶

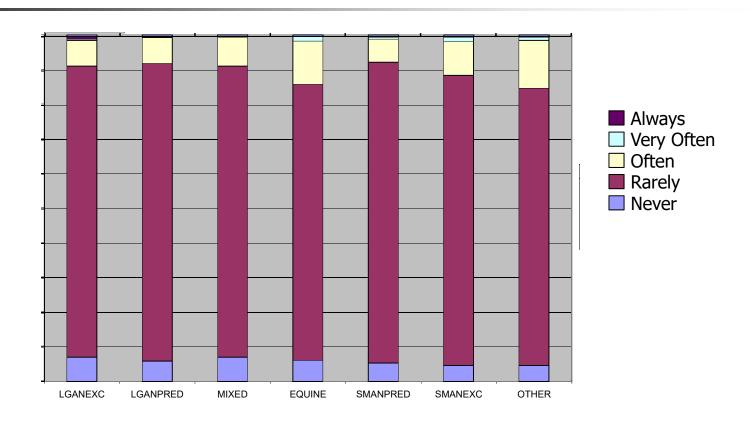
Antimicrobial Use Guidelines for Treatment of Urinary Tract Disease in Dogs and Cats: Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases


J. Scott Weese, ¹ Joseph M. Blondeau, ² Dawn Boothe, ³ Edward B. Breitschwerdt, ⁴ Luca Guardabassi, ⁵ Andrew Hillier, ⁶ David H. Lloyd, ⁷ Mark G. Papich, ⁴ Shelley C. Rankin, ⁸ John D. Turnidge, ^{9, 10} and Jane E. Sykes ¹¹

Veterinarians' Attitudes Regarding Sources of AMR



In your opinion, how important are these aspects of AMD use <u>in humans</u> as contributors to development of antimicrobial drug resistance (in animals or humans)?


In your opinion, how important are these aspects of AMD use <u>in animals</u> as contributors to development of antimicrobial drug resistance (in animals or humans)?

Q2.2

Do Your Antimicrobial Use Practices as a Veterinarian Lead to the Development of Antimicrobial Resistance in Bacteria?

Take-Away About Veterinarians' Attitudes Regarding Sources of AMR

Veterinarians Said:

- Use in humans (physician prescribing, etc) was considered most harmful
- Use by other veterinarians was also believed to promote AMR
 - Most in Food Animals
 - Least in Companion Animals
- My own use rarely/never promotes AMR

Thank You

Email: Paul.Morley@ColoState.edu

http://MicrobialEcology.ColoState.edu

Office: 970-297-0374

Cell:

970-219-6089

colorado school of public health