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Introduction

such methods have been used to inform the World Health 
Organization’s stance on polio (eradication versus con-
trol) (Thompson and Tebbens 2007), to develop a national 
plan that addresses the threat of emerging infectious dis-
eases (Luke and Stamatakis 2012), to aid communities in 
implementing the most cost-effective policies for reducing 
cardiovascular events (Homer et al. 2010), and to under-
stand and intervene with the obesity epidemic (Institute of  
Medicine [IOM] 2010).

Simulation models can also be helpful tools for 
forecasting the consequences of tobacco control poli-
cies, allowing for the evaluation and comparison of 
selected policies and policy options. The use of models in 
tobacco control is expanding and was the focus of Greater 
than the Sum: Systems Thinking in Tobacco Control, a 
monograph (number 18) from NCI (2007). The topic of 
models is included in this report because models will be 
used increasingly to explore strategies that will continue 
and accelerate the decline of tobacco use in the United 
States. Additionally, models offer an approach for pro-
jecting the public health consequences of new tobacco 
products and other products that deliver nicotine to their 
users. Chapters 15 and 16 address strategies for accelerat-
ing the decline of tobacco use, as emphasis shifts to the 
“endgame” for eventual elimination of tobacco smoking. 
Because decision makers increasingly will ask for advice 
about what may be an optimal mix of policy measures, 
modeling will be essential to planning and implementing 
such measures (NCI 2007). Thus, this Appendix provides 
background for the final two chapters of the 2014 Sur-
geon General’s report and for future analyses in support 
of changes in tobacco control policy in the United States. 

Why model? As Epstein (2008) stated:

“Anyone who ventures a projection, or imagines 
how a social dynamic—an epidemic—would 
unfold is running some model. But typically, it is 
an implicit model in which the assumptions are 
hidden, their internal consistency is untested, 
their logical consequences are unknown, and 
their relation to data is unknown. But, when 
you close your eyes and imagine an epidemic 
spreading, you are running some model. The 
choice, then, is not whether to build models; it’s 
whether to build explicit ones. In explicit models, 
assumptions are laid out in detail, so we can study 
exactly what they entail. On these assumptions, 
this sort of thing happens. When you alter the  

This Appendix covers the topic of models that simu-
late tobacco use, the determinants of tobacco use, and the 
consequences of tobacco control interventions and poli-
cies in populations. Such models are widely used in public 
health to, for example, model infectious disease epidemics 
and simulate the consequences of control measures, such 
as vaccination and quarantine (Epstein 2006; Leischow 
and Milstein 2006; Luke and Stamatakis 2012). 

This Appendix begins with an overview of model-
ing, providing a broad introduction before turning to uses 
of the models in specific simulations related to tobacco 
control. The concluding section addresses future uses of 
models in tobacco control.

Simulation models in tobacco control are used in 
three main ways:

1.	 To forecast outcomes of interest under the assump-
tion that the current tobacco control conditions will 
not change in the future (i.e., status quo). Outcomes 
could include tobacco consumption, prevalence of 
smoking, and tobacco-related mortality, and models 
could provide forecasts of such outcomes on sub-
groups of a population.

2.	 To estimate the values or relative values of outcomes 
of interest under future scenarios in which one or 
more new policies, programs, or interventions are 
introduced and/or implemented under ideal or differ-
ent conditions (i.e., explore “what if” scenarios).

3.	 To evaluate the impact of past smoking control poli-
cies by contrasting the historical smoking trajectory 
with the estimated smoking pattern in the popula-
tion, had those policies not been implemented.

Simulation modeling provides a set of strategic and 
heuristic tools to inform how interventions and policies 
can impact upon specific outcomes (e.g., prevalence of 
tobacco use behavior over time, health consequences of 
changes in tobacco use) that are influenced by a complex 
system of multi-level, dynamic interactions of influences 
(National Cancer Institute [NCI] 2007). Systems thinking 
and simulation have been adopted as important strategic 
priorities by the National Institutes of Health (NIH). These 
approaches are beginning to demonstrate their value for 
informing decision making on intervention and policy 
approaches in public health (Mabry et al. 2008, 2010; 
Milstein 2008; Milstein et al. 2010, 2011). For example, 
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assumptions that is what happens. By writing 
explicit models, you let others replicate your 
results. You can in fact calibrate to histori-
cal cases if there are data, and can test against 
current data to the extent that exists” (Epstein  
2006, 2008).

The tobacco control field has many policy ques-
tions that would benefit from modeling. The U.S. Food 
and Drug Administration (FDA), NIH, Centers for Disease 
Control and Prevention’s [CDC] Office on Smoking and 
Health, and state and local tobacco control stakeholders 
are showing increased interest in tobacco policy and inter-
vention modeling. At a Tobacco Policy Modeling Work-
shop in 2013 (NIH 2013), it was noted that modeling and 
simulation can:

•	 estimate a policy’s impact quickly and at a much 
lower cost than waiting to learn what happens after 
a policy is implemented;

•	 estimate what would have happened if the policy had 
not been implemented;

•	 make mental models transparent;

•	 summarize evidence across disciplines at multiple 
levels;

•	 expose research gaps and prioritize them; and

•	 explore “what if” scenarios to identify effective 
approaches.

Models are heuristic, always approximate in nature 
(Epstein 2006). Although they are inherently “wrong” 
because they are representational, their findings are illu-
minating (Sterman 2002). By making model assumptions 
and parameters explicit and transparent, models can iden-
tify the conceptual foundations of their respective fields 
(Leischow and Milstein 2006), inform needs for data col-
lection, suggest potential leverage points for intervention, 
and point to unintended consequences. More details about 
the basics of modeling can be found in Chapter 5 of the 
NCI Monograph, Greater than the Sum: Systems Think-
ing in Tobacco Control, where Richardson states:

“Today’s tobacco control environment represents 
a complex and dynamic interrelated system of 
issues and stakeholders. In this dynamic environ-
ment, change is continuous and poses significant 
challenges for those who would anticipate change 
and prepare for its consequences. There is growing  

recognition that systems approaches need to 
be able to address this challenge of dynamics 
and to anticipate change. Modeling is one of 
the most prominent and promising approaches 
for addressing such problems and, in doing so, 
(modeling is) helping to achieve more effective 
integration of research knowledge and its practi-
cal implications” (NCI 2007).

The Family Smoking Prevention and Tobacco Con-
trol Act of 2009 requires the FDA to use a public health/
population health impact regulatory standard for tobacco 
products instead of the traditional standard of safety and 
efficacy. FDA typically uses individual risk analysis to apply 
its standard for judging efficacy, but for tobacco products 
the agency must now consider overall population impact, 
taking into account users and nonusers of tobacco prod-
ucts and determining the likelihood of harms versus 
benefits at the population level. Thus, in this emerging 
new field of regulatory science (Villanti et al. 2011; Zeller 
2012), simulation modeling will become an invaluable 
tool for FDA-related policymaking as it works with NIH, 
CDC, and other major science agencies to evaluate popu-
lation impact of potential actions. 

Table 15.1.1 provides a simplified overview of the 
main types of simulation models used in tobacco control, 
dividing them into aggregate and individual-level models. 
Models can take many forms to depict complex dynamic 
systems at different levels of granularity. Such divisions 
are somewhat arbitrary in that one can create hybrid mod-
els where individual-level units (agent based) can interact 
to produce an aggregate set of outcomes that can feed into 
compartmental or systems dynamic models. Thus, models 
of “systems within systems” can be developed as part of 
the general field of “systems thinking” and system dynam-
ics (for more details, see pages 111–148 in NCI [2007]).

Compartmental models track groups within a 
population that are considered to be homogeneous for 
the purpose of examining a particular outcome of inter-
est. In contrast, individual-based models represent each 
individual by him/herself without bundling individu-
als together into a group. Individuals in the model have 
their own unique characteristics and ways of relating to 
each other within their specific environments. Individual-
based models include both microsimulation, in which the 
agents do not interact with each other, and agent-based 
models, in which the agents have the opportunity to inter-
act with each other and their environments in ways that 
affect their future behaviors or characteristics. To date, 
individual-based models used in tobacco control have 
been almost exclusively agent-based.

Aggregate (compartmental) models track large 
groups, or compartments, within the populations being 
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studied. Groups may be defined by sociodemographic 
characteristics (e.g., race, gender, age, education, and 
income). Groups may be further distinguished by smoking 
status, quantity smoked, duration of smoking, or type of 
tobacco product smoked (e.g., menthol vs. nonmenthol, 
combustible or smokeless, other product characteristics, 
or brands).

Table 15.1.1	 Main types of simulation models used in tobacco control research

Aggregate (compartmental) models Individual (agent-based) models Examples of inputs and outputs

Main characteristic: Keep track of 
aggregate quantities that describe 
homogeneous groups (e.g., total 
number of smokers in the population).

Structure:
•	 Stocks—Aggregate quantities of 

interest representing homogeneous 
groups (e.g., number of smokers).

•	 Flows—Rates of transitions among 
stocks (e.g., rates of smoking 
initiation and cessation).

System Dynamics Model: Type of 
aggregate model that is further 
characterized by complex, nonlinear 
interactions and feedback effects.

Main characteristic: Keep track of individuals 
as they interact with their environment 
and other individuals through their social 
networks.

Structure:
•	 Agents—Individuals with their unique traits 

that are followed throughout the simulation
•	 Attributes—Individual traits of interest (e.g., 

smoking status, age, gender, socioeconomic 
status)

•	 Rules—Specified behavior of the agents as 
they interact among themselves and with the 
environment (e.g., the interaction between 
a nonsmoking teen and a smoking teen 
increases the probability of the smoking 
initiation by the nonsmoking teen)

•	 Example of inputs:
–– Different smoking control policies, 
e.g., increased taxation for tobacco 
products.

•	 Example of outputs:
–– Estimates of future smoking 
prevalence.

–– Estimates of smoking-related 
deaths.

Aggregate and individual-based models require 
assumptions about the relevant sociodemographic and 
smoking characteristics considered, and the choice of 
characteristics depends on several factors:

•	 features of the problem and how it is operationally 
defined;

•	 relevant characteristics—such as age, gender, and 
socioeconomic status—that affect the link between 
behaviors and health outcomes;

•	 sociodemographic characteristics that are associ-
ated with various smoking patterns;

•	 extent that the effects of policies vary by sociodemo-
graphic, smoking, or other characteristics;

•	 availability of data (e.g., can sufficiently accurate 
data be obtained that distinguish the population by 
potentially relevant characteristics); and

•	 complexity of the model, in terms of the number of 
different group classifications or individual charac-
teristics included. 

Compartmental models can include age as a char-
acteristic in order to represent the relevant transitions of 
individuals over time, such as change in smoking status. 
Discrete time models allow individuals to move between 
different states (e.g., from current smoker at age a in 
period t to former smoker at age a+1 in period t+1) at 
only fixed time intervals (possibly dependent on the state).

Over time, transitions between states or compart-
ments depend on specific transition rules. In agent-based 
models, transition rules may apply to specific behaviors of 
individuals. By contrast in compartmental models, transi-
tions depend on group characteristics—such as age, gen-
der, and smoking status; the effects of policies and how 
they unfold over time; and the health outcomes under 
consideration. Transition rules may depend on individual 
or group characteristics in either type of model.

Central to models of smoking are the transitions 
into and out of smoking status. Transitions into smok-
ing are described by rates of initiation, usually defined in 
terms of the proportion of never smokers in particular 
time period t becoming smokers by time period t+1. The 
definition should correspond to what the model considers 
to be a smoker. For example, if the model considers health 
effects for established smokers, defined as those who have 
smoked 100 cigarettes in their lifetime and are currently 
smoking, then rates of initiation must explain the transi-
tion to being an established smoker.

Smoking models may also consider cessation and 
relapse by representing each of these statuses separately. 
Cessation is generally considered over a fixed period of 
time, such as the past year, and relapse may be modeled as 
dependent on the number of months or years since quit-
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ting smoking. Cessation and relapse may be collapsed into 
a measure of cessation net of relapse for simplicity when 
the issues surrounding relapse are not considered central 
to the problems addressed by the model.

Some models define situations that involve multiple 
subsystems. In such models, the actions applied to a par-
ticular subsystem may produce an effect that triggers a 
response in other subsystems, which may in turn affect 
the system that produced the original response. This cir-
cular cascade effect, known as feedback, is the hallmark of 
a more general characteristic of system dynamics models 
(Sterman 2000, 2006; NCI 2007). For example, policies 
may affect smoking rates, and changes in smoking rates 
may in turn affect social norms or the ability to imple-
ment policies.

Several distinct simulation models have been devel-
oped that can be used for tobacco control research. To 
date, simulation models have been used to evaluate sev-
eral types of interventions and policies:

•	 taxation and price (Emery et al. 2001; Ahmad 2005b; 
Ahmad and Franz 2008; Mendez et al. 2013);

•	 media campaigns (Levy and Friend 2001; Tobias et 
al. 2010);

•	 educational programs (Dino et al. 2008);

•	 advertising bans and warning labels (Levy et al. 
2006; Ferrante et al. 2007);

•	 youth access laws, such as increasing the legal smok-
ing age (Ahmad 2005a,c; Ahmad and Billimek 2007);

•	 mandating coverage for cessation treatment (Levy 
and Friend 2002a,b; Warner et al. 2004);

•	 combining policies and interventions to boost popu-
lation prevalence reduction (e.g., Abrams et al. 2010; 
Levy et al. 2010a,b,c);

•	 indoor clean air laws (Levy et al. 2001; Ong and 
Glantz 2004; Richiardi et al. 2009);

•	 making safer cigarettes (Sumner 2003; Tengs et al. 
2004; Ahmad and Billimek 2005); and

•	 informing potential regulatory policies of the FDA, 
for example, banning menthol (Levy et al. 2011) and 
reducing the level of nicotine in cigarettes (Tengs et 
al. 2005; Cavana and Tobias 2008).

Simulation models have also been developed to 
assess the impact of various cessation treatments using 
cost-effectiveness frameworks. The impact of cessation 
treatments can be evaluated by inputting the treatment’s 
effectiveness, as extracted from the literature, and then 
comparing the output of several treatment options, includ-
ing no treatment. Cessation treatment can also be evalu-
ated by varying the percentage of treatment uptake. For 
example, Apelberg and colleagues (2010) compared a con-
stant increase in the uptake and use of nicotine replace-
ment therapy, until a doubling of the rate was achieved, 
to a constant increase in the uptake of use of nicotine 
replacement therapy, until 100% use was achieved. Avila-
Tang and colleagues (2009) evaluated the health benefits 
of nicotine replacement therapy and quit attempts by 
comparing constant rates to gradually increasing rates 
over time.

Types of Simulation Models Used 
in Tobacco Control

Aggregate (Compartmental) Models

Aggregate or compartmental models simulate the 
evolution of stocks and flows. In one form of compart-
mental modeling, the initial population (the stock(s)) is 
commonly grouped into nonoverlapping stocks of smok-
ing status, most often “never,” “current,” and “former” 
(Figure 15.1.1) and may be disaggregated further by gen-
der and age. Flows represent the active changes within 
the system that determine the values of the stocks (i.e., 
the percentages of never, current, and former smokers in 
the population). Flows commonly presented in tobacco 
control models are governed by rates of initiation, cessa-
tion, and relapse. These rates are applied to the stocks to 
determine the changes or outcomes (i.e., the percentage 
of never, current, and former smokers in the population; 
number of persons in each group who died) at a given 
point in time.

In the tobacco control literature, aggregate mod-
els generally take a population perspective and thus start 
with an initial population typically based on external data 
sources (e.g., the U.S. Census). In the simulation, the 
population undergoes life-cycle changes through births, 
deaths, aging, and net migration and other changes, 
such as smoking status. The rates of these population 
changes—such as age- and gender-specific smoking ini-
tiation, cessation, and relapse—are often derived from 
various external sources, including the Current Popula-
tion Survey’s Tobacco Use Supplement and the National 
Health Interview Survey (see Chapter 13). “Former”  
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smokers may be disaggregated further by the number of 
years since quitting smoking. The initial smoking status 
for the population is derived from other data sources, such 
as the Behavioral Risk Factor Surveillance System, Youth 
Risk Behavior Survey, National Health Interview Sur-
vey, National Youth Tobacco Survey, and databases from 
departments of health.

Figure 15.1.1	 Example of a stock and flow diagram

System dynamics is an important specialization of 
the aggregate modeling approach, taking the perspective 
that the world is a complex system with interconnected 
components (Sterman 2001). System dynamics deals 
with internal feedback loops and time delays that affect 
the behavior of the entire system. What makes using sys-
tem dynamics different from other approaches to studying 
complex systems is the use of feedback loops and stocks 
and flows. The elements of system dynamics diagrams 
are feedback, accumulation of flows into stocks, and time 
delays. The models include nonlinear processes that are 
characteristic within complex social phenomena, such 
as counterintuitive behavior of social systems and unin-
tended consequences (Luke and Stamatakis 2012). Models 
solve the problem of simultaneity (mutual causation) by 

updating all variables in small time increments with posi-
tive and negative feedbacks and time delays structuring 
the interactions and control (NCI 2007).

Agent-Based Models

An agent-based model is a class of computational 
models for simulating the actions and interactions of 
autonomous agents (individual and collective entities, 
such as organizations or groups), with a view to assess-
ing their effects on the system as a whole. The models 
simulate the simultaneous operations and interactions 
of multiple agents, in an attempt to recreate and predict 
the appearance of complex phenomena using heuristics or 
simple decision-making rules. The process is one of emer-
gence from the lower (micro) level of systems to a higher 
level. Agents may experience “learning”, adaptation, and 
reproduction. Most agent-based models are composed of: 
(1) numerous agents specified at various scales (typically 
referred to as agent-granularity), (2) decision-making 
heuristics, (3) learning rules or adaptive processes, (4) an 
interaction topology, and (5) a non-agent environment. 
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Agent-based models have been directed at the adoption 
of smoking behavior, in particular, and have assessed the 
impact of peer influences on this behavior. For example, 
Axtell (2006) modeled the adoption of smoking behavior 
in the context of adolescent social networks. Song (2006) 
incorporated addiction and cessation functions to esti-
mate individual smoking probabilities, as well as peer 

networks, into an agent-based model of adolescent smok-
ing behavior. Hybrid models that incorporate agent-based 
models within broader system dynamics models are also 
being developed (Osgood 2007).

The next section describes briefly the features and 
characteristics of aggregate compartmental and agent-
based system dynamics models.

Types of Models and Modeling Approaches

Aggregate (Compartmental) 
Models

System Dynamics Models

System dynamics is a broad, evolving approach to 
understanding and managing complex systems. The ori-
gin of system dynamics lies in the pioneering work of Jay 
Forrester (of the Massachusetts Institute of Technology) 
(Forrester 1958, 1961). Since then, the toolbox of system 
dynamics has been refined and extended (Sterman 2000). 
System dynamics builds on elements from systems think-
ing and complex systems theory.

Several motivations are central to the system 
dynamics approach. The first is the conviction of the value 
of models that operationally express hypotheses about the 
causes behind system behavior. Such hypotheses can be 
termed “dynamic hypotheses,” because they posit a partic-
ular causal structure for the system—“what affects what” 
in the system and the nature of that interaction—that has 
implications for the system’s behavior over time and for 
its responses to interventions. Such models can be used 
to help explain diverse observed patterns (i.e., “behavior 
modes,” such as a sudden rise in the rate of smoking ini-
tiation or a decline in tobacco-related mortality) and the 
impact of possible choices on the system. In many ways, 
system dynamics models serve as “thinking tools.” A sec-
ond motivation behind the practice of system dynamics 
lies in observing the ubiquity of mental models of this 
sort—that is, the act of routinely, but too often implicitly, 
constructing stylized mental models of the systems with 
which we interact. System dynamics seeks to make these 
models explicit (so that they can be shared, critiqued, and 
refined) and, where possible, to make them quantitative 
(so that computers can be used to secure a more reliable 
understanding of the models’ logical implications for sys-
tem behavior over time, and the impact of choices on that 

behavior). A final source of motivation reflects the obser-
vation that the presence of feedback fundamentally shapes 
the behavior of many systems over time and complicates 
decision making regarding those systems. The historic 
record is replete with cases where people have overlooked 
feedback effects (Tenner 1996; Sterman 2000). Even when 
feedback is recognized, decision makers may suffer from 
poor intuition about skillfully interacting with feedback-
rich systems. While feedback phenomena may pose dan-
gers, they may also offer opportunities: some of the most 
powerful and effective interventions are those that seek to 
change the feedback structure of a system. 

Model building is central to the system dynamics 
approach, particularly the need to build and simulate 
models of the system that capture operational hypotheses 
for “how the system works.” Like other dynamic model-
ing techniques, quantitative system dynamics models pro-
vide formalisms to express quantitative relationships and 
dynamic hypotheses in an operational form that is use-
ful for decision making. Such models can also help with 
theory generation (e.g., exploring possible hypotheses 
that might explain system behavior) and theory evalua-
tion (e.g., thinking consistently through and scrutiniz-
ing the implications of those hypotheses in terms of their 
consistency with empirical observations, estimating com-
ponents of the model in light of such observations, and 
offering information about important priorities for data 
collection or improving system understanding).

Basic Concepts of Feedbacks

Feedbacks are central to the concept of system 
dynamics. Feedbacks are causal sequences in which a 
change at one point in a system leads to a cascading 
series of changes that have a ripple effect to either amplify 
or push back the initial change. Altering the feedback 
structure of a system can also be of tremendous value in  
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helping to manage that system. Feedbacks are very com-
mon and can be observed in diverse aspects of daily life. 
They play a prominent role in shaping the impact of 
tobacco and tobacco control policies at the individual or 
societal levels.

Feedbacks can be characterized into two sorts: rein-
forcing (or positive) and balancing (or negative). In this 
case, the terms positive and negative do not carry their 
typical normative connotations. Instead, these terms 
reflect the fact that the response to the simulation cre-
ates a response relative to the original change in either the 
same direction (reinforcing or positive feedback) or the 
reverse direction (balancing or negative feedback).

Because balancing feedbacks push back original 
changes, such feedbacks can make a system stable and 
resistant to change. Sometimes this stability can be unde-
sirable—such as when growing cravings drive a person 
trying to quit smoking to fall back into his or her habit. 
However, such feedbacks can also confer key benefits. In 
addition to their operation at the individual level, balanc-
ing feedbacks can also work at the societal level. For exam-
ple, a rise in tobacco use among adolescents can trigger 
alarm, research, and policy action to reverse the worrying 
trend. Interventions to lower the burden of tobacco can 
lead tobacco companies to strategize and take action to 
maintain market share.

Like its balancing cousin, reinforcing (or positive) 
feedbacks are associated with situations in which an origi-
nal change triggers a series of responses that cascade to 
interact with the original change. While the response in 
balancing feedbacks pushes the system in the opposite 
direction of the original change, reinforcing feedbacks 
trigger responses in the same direction as the original 
change, thereby amplifying the original change. When the 
direction of the change is deleterious, such feedbacks are 
frequently termed vicious cycles. At the individual level, 
for example, an increase in nicotine addiction on the part 
of an adolescent can trigger a series of changes (e.g., more 
frequent use of cigarettes or use of additional tobacco 
products) that further deepens the addiction. Such feed-
backs are also common at the interpersonal level. For 
example, the initiation of smoking by one popular student 
can lead to copy-cat behavior in impressionable peers, 
triggering subsequent initiation by several other students. 
However, reinforcing feedbacks can also trigger virtuous 
cycles that cascade favorable change in the same direc-
tion. For example, smoking cessation by a popular person 
may lead to smoking cessation by several other parties. 
Some of the earliest research that applied systems model-
ing to smoking mapped out diverse feedbacks associated 
with tobacco use (Roberts et al. 1982).

Stocks and Flows

Structural Elements

Although the behavior of real-world systems is 
often complex, such behavior also frequently exhibits 
fundamental regularities. Certain types of factors in a 
system can change rapidly based on a change elsewhere 
in the system. For example, yearly initiation counts or 
the number of cigarettes being smoked by an individual 
each month may vary widely over time. But other types 
of variables, such as the count of smokers in the popula-
tion or an individual’s degree of nicotine addiction, may 
be capable of only very slow change. This latter variable 
type is typically associated with great “inertia,” in which 
even dramatic changes in related variables elicit only slow 
changes in the variable of interest. As a result of this prop-
erty, long delays can separate the propagation of changes 
from one part of the system to another. Another form of 
regularity in such a system is associated with sequential 
(“upstream-to-downstream”) linkages that connect many 
different system components. In such cases, changes in 
the upstream components (e.g., a state policy that bans 
smoking indoors) lead slowly but surely to changes in 
downstream elements.

The differences between these two types of variables, 
and the nature of sequential linkages, can be captured 
neatly by distinguishing between two types of quantities: 
stocks and flows. Stocks (also called levels, state variables, 
or compartments) are accumulations. Being accumula-
tions, stocks cannot change instantaneously. Instead they 
can change only over time due to influences from other 
factors (flows). Stocks serve as the system memory and col-
lectively characterize the state of the system. The current 
values of stocks at any given moment drive the changes in 
the system to be experienced in the near future. 

Stocks of relevance to tobacco-related models vary. 
At an individual level, potential stocks include an individ-
ual’s level of addiction to tobacco, the cumulative damage 
caused by tobacco, and an individual’s strength of convic-
tion in the hazards of cigarettes. At a population level, 
potential stocks include people distinguished simultane-
ously by various stages of tobacco use (e.g., current, never, 
and former), by health states or categories of tobacco use, 
and by various demographic characteristics (e.g., almost 
80% of African American adults smoke mentholated ciga-
rettes). Potential other stocks of interest could include 
(possibly discounted) costs (e.g., accumulated health costs 
born according to different perspectives and accumulated 
intervention costs), quality-adjusted life years, and accu-
mulated tobacco-related deaths. Some stocks could also be 
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associated with tobacco industry operations, such as the 
number of stores that sell tobacco products or the num-
ber of those in which the tobacco industry has enrolled in 
coupon programs. Figure 15.1.1 presents an example of a 
stock and flow diagram. In visual representations of stocks 
in system dynamics diagrams, stocks are shown as boxes. 
Figure 15.1.1 includes several stocks, including never, 
current, and former smokers. 

By contrast, flows represent the rates of active 
change in the system and the conserved quantities that 
shift between stocks. In visual representations of flows in 
systems dynamics diagrams, flows are commonly depicted 
by valves and clouds. A cloud at one end of a flow indi-
cates that the end of the flow lies outside of the scope of 
the model. Figure 15.1.1 includes several flows, including 
initiation, cessation, and relapse. Common flows within 
a tobacco control context would be those associated with 
these same indicators of rates of change.

Typically, a flow cannot be measured instanta-
neously, nor can it be quantified without mentioning a 
time unit. By its nature, a measurement of a flow reflects 
the change in a certain quantity over some period of time 
(e.g., a magnitude of 5 quitters per week or 60 quitters per 
year). The net flows affecting a stock determine the evolu-
tion of that stock. A positive net flow leads to progressive 
increases in the value of the stock over time, and a nega-
tive net flow decreases the value of that stock over time. 

In general, the rates of flow at any given point in 
time are dependent upon the state of the system at that 
point—a state that is specified by the values of the stocks. 
For example, consider a stock of current smokers. Despite 
several outflows from this stock (e.g., representing death 
or smoking cessation), the number of people leaving the 
stock over a brief period of time cannot exceed the num-
ber currently in the stock. For this reason, the rate of out-
flow of a stock subject to depletion typically depends on 
the value of that stock. Such a flow may also depend on 
other stocks. For example, a modeler might posit that the 
risk that a never smoker will initiate smoking depends in 
some fashion (likely complex) on the prevalence of smok-
ing among his or her peers and other factors. Reflecting 
this dynamic hypothesis, the magnitude of the “initia-
tion” flow in Figure 15.1.1 might depend on the number 
of never smokers in that age group and also on the num-
ber of smokers (the value of the current smokers stock) in 
that or nearby age groups (via smoking prevalence). As a 
result, as the prevalence of smoking changes in the simu-
lated population, the likelihood that a never smoker would 
initiate smoking will vary accordingly.

Stocks and flows also play important roles in feed-
backs. The feedbacks depicted in causal loop diagrams 
link together stocks and flows. Figure 15.1.1 includes a  

number of such feedbacks, including those that link each 
stock with its outflow (thereby preventing depletion). 
Every feedback—no matter how rapid—is associated with 
some accumulation process that involves at least one 
stock. This process leads to at least a small delay between 
the original change and the consequent amplification or 
push-back.

Dynamics

The evolution of stocks over the next short period of 
time depends on the net of their flows over that interval. 
Specifically, viewing the magnitude of flows into a stock 
as being positive and the flows out as being negative, the 
rate of net change over time of a given stock (mathemati-
cally, its derivative) is equal to the sum of the values of its 
flows. Thus, the value of a stock of former smokers—in 
which there were 100 individuals quitting per week, 50 
individuals relapsing per week, and 1 individual dying 
per week—would rise at a rate of 49 individuals per week  
(100 – 50 – 1 = 49). A stock rests in equilibrium when the 
sum of the rates of all inflows equals the sum of the rates of  
all outflows.

At a mathematical level, stock and flow models 
represent Ordinary Differential Equations, a powerful 
formalism used widely in applied mathematics across 
many application areas. This correspondence permits 
modelers to use a wide variety of analysis tools and to rea-
son about the behavior of a system under a wide variety  
of conditions.

Feedbacks reflect cyclic causal linkages between 
stocks and flows. Because all changes in a system over 
time are caused by changes to stocks, and because the 
changes in those stocks are driven by flows, all feedbacks 
must involve at least one stock and one flow. The struc-
ture of the feedbacks gives rise to certain characteristics of 
emergent behaviors that can be categorized by two types 
of feedback loops: balancing feedbacks and reinforcing 
feedbacks, as described previously.

Many balancing feedbacks lead to stability and resis-
tance to change. For example, many physical stocks (e.g., 
people, cigarette or tobacco inventories, addiction level) 
are subject to depletion and cannot physically become 
negative. Ultimately, if the stock contains nothing and all 
inflows are zero, then nothing can flow out and the values 
of the outflows must be zero. The outflows of such stocks 
are almost always associated with balancing feedbacks. 
Figure 15.1.2 presents a simple example of a balancing (or 
negative) feedback loop, in which people in a stock (e.g., 
current smokers) have a constant likelihood per unit of 
time of leaving that stock (e.g., a certain likelihood per 
month of quitting) via one or more pathways. As depicted 
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in Figure 15.1.3, this scenario leads to a self-regulating, 
stable situation in which a higher value of the stock leads 
to a higher outflow (and thus a higher rate of outflow), 
and a lower value of the stock results in a smaller outflow 
(and hence a slower rate of outflow). At the equilibrium 
value of the stock itself, the flows will be in perfect bal-
ance, and the stock will rest unchanging. Figure 15.1.3 
shows the resultant behavior for a system such as this.

Figure 15.1.2	 Example of a simple balancing (or negative) feedback loop

Figure 15.1.3	 Several possible goal-seeking trajectories of the stock in Figure 15.2, given different initial numbers 
of current smokers

Some balancing feedbacks are associated with lon-
ger delays in perception and/or response. In the context of 
tobacco, such a response or target might be staffing levels 
for a quitline or regulatory guidelines or policy initiatives 
in place to counter tobacco activities. For such feedbacks, 
the push-back arising from the balancing feedback loop 
at a given time is dictated by a disturbance experienced 
some time ago and not by the disturbance impinging at 
the current time. In this case, the system’s response and 
action often lead to oscillations in system output, as the 

system will frequently overshoot the target level when 
approaching equilibrium (Figure 15.1.4). Such oscilla-
tions stem from certain familiar experiences from daily 
life. Oscillations occur when an individual compensates 
for a course deviation by overshooting his/her correction 
and ends up deviating in the opposite direction (similar 
to the fluctuations one experiences when trying to walk 
on a balance beam). Bearing in mind that it could apply 
to many particular situations, Figure 15.1.4 displays a 
generic system structure for such a system. This system 
attempts to regulate the change of the response variable 
so that it matches a perceived target. However, in a key 
difference from the balancing feedbacks depicted in Fig-
ures 15.1.1 and 15.1.2, the perception of the discrepancy 
between the current situation and the target is delayed. 
Even when trying to match a fixed target, the behavior for 
the regulated quantity (response) exhibits damped oscilla-
tions (Figure 15.1.5).
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Figure 15.1.4	 Generic system structure for feedback with delayed perception of discrepancy

Figure 15.1.5	 Level of response mustered to a constant target in which the presence of a perception delay leads to 
an overshoot
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Although balancing feedbacks frequently lead to 
stability and resistance to change, reinforcing feedbacks 
generally trigger rapid and accelerating change (e.g., the 
rise and replacements of fads or the rapid spread of infec-
tious disease outbreaks or rumors). Figure 15.1.6 pres-
ents a diagram of a simple reinforcing feedback loop. The 
loop consists of a stock (population) and a flow (births), 
in which the number of people born per year is given by a 
birth rate times the value of the stock. If birth is the only 
flow associated with the stock, then any birth rate greater 
than zero will yield ever-accelerating growth of the stock: 
A value of the stock at a given time will yield births that 
flow into that stock, yielding a yet higher stock and an 
elevated number of births per year (Figure 15.1.7).

Figure 15.1.6	 Example of a simple reinforcing (or positive) feedback loop

Heterogeneity

In system dynamics models, stocks capture accumu-
lations of things that are hypothesized to be relatively sim-
ilar, at least from the perspective of the model’s purpose. 
The contents of such stocks are assumed to be well-mixed, 
interchangeable, and relatively homogenous in terms of 
criterion of concern to the model. Population heterogene-
ity significantly shapes the effects of health interventions 
(Shepard and Zeckhauser 1980). Behavioral patterns of 
tobacco use differ markedly across age groups and eth-
nic and gender categories (Giovino 2002). Recognizing 
underlying heterogeneity of this sort may permit more 
judicious targeting of tobacco intervention strategies and 

can offer information about unintended side effects of 
tobacco control policies.

Parameter Estimates

Direct Parameter Estimates

System dynamics models typically contain a variety 
of parameter values. Although a model’s structure (i.e., 
the arrangement of stocks and flows and their associ-
ated relationships) captures a dynamic hypothesis about 
how the world works, the parameters of the model specify  
particular assumptions that tailor the hypothesis to a  
particular context.

The particular set of parameters associated with a 
model depends on the purpose of the model. In the con-
text of tobacco, for example, common parameters may be 
associated with the natural history of health conditions 
(e.g., rate of development of cardiovascular disease or 
oncological progression), risks of morbidity and mortality 
for classes of individuals, a level of smoking undertaken, 
and behavior change hazards. Notably, however, a quan-
tity represented merely as an exogenous parameter in one 
model (e.g., an age-specific rate of smoking initiation) may 
in fact be treated endogenously in another model (e.g., a 
model in which the rate of smoking initiation is driven 
endogenously by the effects of peer pressure or depends on 
the prevalence of smoking).
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Figure 15.1.7	 Dynamics of the “population” stock for different initial values of the population

Parameters of models are generally drawn from a 
variety of sources. In some cases, modelers can use bio-
statistical techniques to estimate the parameters from 
the primary data that are available. In other cases, param-
eters can be taken from secondary sources, such as pub-
lished estimates, in particular sources in the literature; 
the results of externally or internally conducted meta- 
analyses; estimates from other models; findings from sur-
veys findings; or judgments from experts.

Calibration

Despite the ability to perform a sensitivity analysis, 
direct data may not be available on certain parameters of 
a model or aspects of a model state. However, data may 
be available on some (and sometimes many) aspects of 
system behavior that are proximally or distally related 
to such parameters. For example, a modeler may seek to 
build a model that includes representation of the illegal 
(black) tobacco market, but he or she may not be able to 
obtain direct data on the diversion of tobacco crops to 
this market or on the level of consumption of such ille-
gal products. The modeler can then look to historic data 
on such factors as contraband seizures or results of sur-
veys suggestive of levels of use of illegal tobacco products 
or that give estimates of overall tobacco use inconsistent 
with recorded tobacco sales data. Although such types of 
data do not allow direct estimates of the parameter val-
ues of interest, the fact that the observed phenomena are 
influenced by those parameters often means that they 
implicitly provide information on, and constraints about, 
the underlying values of the parameters that shape them. 

In such circumstances, a process known as “cali-
bration” can be leveraged to estimate the parameters of 
a model. This process not only helps with estimating the 
values of parameters, but it frequently can provide insight 
on the need to refine the model and can help to identify 
research priorities. Modelers use the calibration process 
to adjust the parameters of a model for which few data are 
available; this allows the output of the resulting model to 
better match the observed patterns from historical data. In 
certain cases, this process yields a good fit to the historical 
data. The derived values of the parameter are not guaran-
teed to be correct, but they serve as a plausible assignment 
of values for the parameters—one that is consistent with 
what has been observed in the system.

A process known as “cross-calibration” can further 
increase the level of confidence in a model. In this process, 
the model is first calibrated to only a subset of the known 
data; the remaining data are set aside for later use. Greater 
confidence in the model is achieved if it can predict the 
remaining data, despite not having been calibrated to 
match that data.

Scenarios

Model Experimentation

In most cases, a baseline scenario is created to serve 
as a reference case (sometimes referred to as the “status 
quo scenario”). Output of other (alternative) scenarios can 
then be compared with this reference scenario. The base-
line scenario could depict some default situation but is 
generally not particularly privileged. Alternative scenarios 
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are typically run by modifying some element of the model 
(reflecting the desire to examine the impact of different 
assumptions or to represent some intervention), simulat-
ing that model, and comparing the results of that model to 
the baseline scenario. Results of interest from the model 
could include the trajectory of any model variable, such 
as the accumulated number of tobacco-related deaths or 
life-years lived, the quality-adjusted life-years lived, or 
the accumulated costs. For some types of analyses (e.g., 
cost-effectiveness analysis), either the model itself or the 
modeler must compute one or more differences of a given 
alternative scenario from the baseline.

Capturing Intervention Impacts

An important use of system dynamics and com-
partmental models in tobacco control is to investigate 
the effects of common interventions (e.g., policies, such 
as price increases or smokefree laws; cessation treatment 
policies and programs; program interventions, such as 
mass media campaigns) that are used alone or in com-
bination with proposed new interventions (e.g., warning 
labels on tobacco packages, changes in tobacco product 
toxicity). Interventions can be simulated as model sce-
narios at different levels of detail. The simplest way of 
representing model interventions starts by positing that a 
given intervention will change particular parameters of a 
model by certain values. This assumption could be based 
on published sources of data on intervention impacts 
(e.g., measuring increases in the rates of cessation that 
result from the availability of quitlines or increases in the 
excise tax, or measuring decreases in the rates of smoking 
initiation after exposure to peer education programs), or 
it could be based on a more theoretical framework that 
seeks to examine the possible impacts of a broad set of 
possible intervention effects, without focusing on the 
exact mechanisms by which such effects are realized. For 
example, a baseline scenario could represent a business-
as-usual (i.e., status quo) case in which observed patterns 
in changes of tobacco behavior remain similar to what is 
currently observed. Next, modelers could establish alter-
native scenarios to examine the impacts of decreasing the 
rates of smoking initiation in population subgroups by a 
certain proportional amount (e.g., 10%). Modelers could 
then compare the effects of each of these scenarios on the 
outcomes of interest. On the other hand, modelers could 
systematically examine the impacts of changing the rates 
of smoking initiation, cessation, and relapse in popula-
tion subgroups and then examine the impacts of concern 
(Tengs et al. 2001b).

In other cases, modelers may decide to make a more 
detailed representation of an intervention. This could be 
undertaken by adding to the model the additional stocks 

and flows that are necessary to capture the effect of the 
intervention over time. For example, a broader simulation 
model of cessation treatment explored the effects on pop-
ulation smoking prevalence of implementing a compre-
hensive tobacco control strategy with four components:  
(1) price increases through cigarette tax increases,  
(2) smokefree indoor air laws, (3) mass media/educational 
policies, and (4) boosting evidence-based and promising 
cessation treatment policies (Levy et al. 2010d). The goal 
of the model was to examine the relative effectiveness 
of the four policies and their combined contribution to 
meeting the Healthy People 2010 goal of 12% smoking 
prevalence. In another example, modelers wanted to rep-
resent the impact of a school-based antitobacco education 
program that involved a nationwide, multitiered training 
effort for teachers and other staff (Tengs et al. 2001a). A 
program of this sort yields textured dynamics in terms of 
its health effects (e.g., impacts on rates of smoking initia-
tion) and teacher training. Following the initiation of a 
program of this sort, the first priority might be to train 
the program instructors and, as the instructors become 
available, to initiate training of the classroom teachers. 
Given this multistage training approach and the time 
required for training each teacher, many years could go by 
until large numbers of students are being exposed to the 
classroom-based program. Figure 15.1.8 shows one way of 
seeking to extend the model displayed in Figure 15.1.1, so 
as to capture the dynamics of teacher training and associ-
ated factors. Such a model could readily be extended to 
represent additional factors, such as intervention costs.

Sensitivity Analyses

Modelers perform a sensitivity analysis to exam-
ine the impact on model results of making alternative 
assumptions about a model. Such an analysis is accom-
plished by reflecting the changed assumptions in the 
model, and then simulating one or more model scenarios. 
In most cases, the changed assumptions are reflected in 
a model by altering the specific values that are associ-
ated with the parameters of the model. In some cases, the 
behavior of a particular variable in the model over time 
will be highly sensitive to the value of a particular para-
meter and, in other cases, the behavior of a variable may 
be insensitive to the value of a parameter. Practitioners  
of system dynamics models commonly look at (1) how 
soon these differences appear and (2) the magnitude and 
direction of the eventual differences. In other cases, rep-
resenting the changed assumptions in the model may 
necessitate changes to the structure of the model (e.g., 
adding new stocks, disaggregating an existing stock into 
several stocks, eliminating flows, and providing additional 
pathways for movement from one stock to another).  
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In a process known as “structural sensitivity analysis,” 
modelers can examine the impact of these changes on 
particular variables over time.

Figure 15.1.8	 Model from Figure 15.1.1, extended to incorporate the structure required to capture intervention 
dynamics

In addition to examining the impact of changing 
model assumptions on the trajectories of particular model 
variables over time, modelers can also examine the impact 
of the changed assumptions on the model’s reported trade-
offs between interventions. In some cases, changing model 
assumptions may widen a disparity between the impacts of 
two interventions that were first recognized by simulating 
the baseline scenario. In other cases, alternative assump-
tions may reverse the relative desirability of each inter-
vention, causing an intervention that was viewed as most 
competitive during the baseline scenario to be eclipsed in 
desirability by another intervention.

Modelers can also perform a sensitivity analysis to 
investigate interventions. In this manner, the proximal 
effects of an intervention are represented by imposing 
changes on the parameters of a model (e.g., the smok-
ing cessation rate for a certain age group or the assumed 
impact of peer pressure on rates of smoking initiation for 
other age groups). In some cases, structural cases may 
be added to a model. For example, assume that model-
ers created a model to capture the dynamic impacts of the 
interaction between human papillomavirus (HPV) infec-
tion and tobacco use, but they were further interested in 
examining the impact of interventions, such as targeting 

HPV vaccination at smokers. Modelers could then incor-
porate a smoking vaccinated stock into the model. Such a 
stock would represent smokers who had received an HPV 
vaccine to lower their tobacco-induced risk of cervical 
cancer and risk of transmission. Modelers could run the 
scenario to examine the impact of these changes on the 
outputs of the model.

Agent-Based Models

Agent-based models offer a powerful way to model 
complex social interactions. The individual agents follow 
plausible adaptive rules for interacting with each other 
and with the (possibly changing) environment, and can be 
at any level or multiple levels of aggregation (Hammond 
2008). In terms of policy impact, agent-based models 
are accessible to decision makers because they are rule-
based and have highly visual outputs (Mann et al. 2008). 
Agent-based models are also user-friendly and interactive, 
which facilitates interdisciplinary model development and 
allows for less restrictive assumptions about individuals 
and system-level behavior. The results of an agent-based 
model are emergent, in the sense that agent-based mod-
els can highlight macro-level outcomes or patterns that 
emerge from micro-level actions and interactions among 
individuals. 
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Agent-based models are relatively new techniques 
that have quickly become useful in public health areas 
where behavior plays an important role in evaluating 
health policies, understanding behaviors and behavior 
changes (Cooley et al. 2008; Epstein et al. 2009), and 
filling a gap in existing research by integrating possible 
interacting scenarios in a formal way.

More traditional methods, such as regression and 
system dynamics models, do not always provide clear 
answers to questions about tobacco initiation, use, and 
cessation. Some questions might look at local behavior 
in a specific environment, group of individuals, or even 
separate individuals, while others might address the issue 
of how heterogeneity and local interactions influence 
collective behavior (Cooley et al. 2008). Other questions 
may explore self-organization and propagation of ideas 
and behaviors on networks, such as QuitNet and other 
social networks, which could change over time. In addi-
tion, theoretical questions may allow for the translation of 
local behavior into a global, self-organizing phenomenon 
(Epstein et al. 2010).

Luke and Stamatakis (2012) reviewed the potential 
utility of using network analysis to study tobacco control 
issues. They proposed that high-level, aggregate models 
(including system dynamic models) like those described 
above can be useful in forecasting long-term population 
trends, but may be less useful due to their aggregate struc-
tures at identifying important mechanisms or relational 
structures that could be very important in producing 
changes in tobacco use behaviors. Luke and colleagues 
(2011) further noted that agent-based modeling was only 
starting to be used to evaluate tobacco control issues. The 
researchers commented that agent-based models could 
be very useful in the evaluation of the dynamic impact 
of changes in tobacco retailer densities due to attrition, 
increased licensing feeds, or buffer zones around schools.

Implications

Agent-based models can be an important tool for 
decision makers because such models can uncover details 
that could be masked by other approaches. Agent-based 
models can be used to forecast the outcomes of future 
interventions and to avoid policy resistance before the 
intervention is implemented. Because agent-based mod-
els can incorporate a high level of individual detail, they 
can consider a broad range of factors, from environmen-
tal propensity to genetic propensity to get addicted and 
be successful in treatment. Despite being relatively new, 
agent-based models are developing fast, and with the help 
of novel data collection techniques and advances in com-
puter science, they have the potential to be an effective 
tool in tobacco control.

Main Challenges and Future Developments

Two critical issues restrain the broader use of agent-
based models: (1) the availability of the appropriate data 
for populating the model and (2) the additional uncer-
tainty associated with the stochastic nature of communi-
cation and decision making among the agents.

Data Collection Approaches and Data Use in 
Agent-Based Models

Epidemiological and policy studies have long 
depended on survey data that are aimed at providing reli-
able, representative evidence about an entire population. 
Surveillance data systems have been used to track inci-
dence and abnormalities at the population level. Recent 
and still evolving developments of data collection—such 
as ethnographic studies (Hoffer et al. 2009), ecologi-
cal momentary assessments (Minami et al. 2011), and 
dynamic social networks (e.g., QuitNet, Facebook, Fram-
ingham Study, cell phone networks)—provide a basis for 
developing agent-based models (Christakis and Fowler 
2008; Cobb et al. 2011).

Another emerging and fast-growing area of data 
collection comes from virtual social networks, such as 
Quitnet and Facebook (Cobb and Graham 2012). These 
networks can potentially provide invaluable data about 
human interaction, health and behavior, spread of infor-
mation, innovation, and beliefs (Cobb et al. 2010, 2011). 
The use of new media (e.g., text messaging) opens avenues 
to reach younger adults that are otherwise underutilized 
in existing smoking cessation services (Bock et al. 2004; 
Boudreaux et al. 2010; Cobb 2010). Finally, virtual com-
munities, such as Second Life, can provide novel vehicles 
in data collection and interventions that have not been 
studied sufficiently (Cook et al. 2009; Murphy et al. 2010). 
At the same time, the concerns of privacy and misuse 
of personal data impose a significant barrier to quickly 
implementing modeling techniques that use this data.

Agent-based models can use new technologies 
through three approaches. The first approach pertains to 
studies of tobacco-using trajectories that use ecological 
momentary assessments or ethnographic or other detailed 
behavior data. Understanding drug-using trajectories can 
help to identify mechanisms that lead to the initiation and 
persistent use of particular drugs and to the identifica-
tion of individuals who are at the greatest risk (Epstein 
et al. 2007; Hoffer et al. 2009; Bobashev et al. 2010). For 
example, Bobashev and colleagues (2010) showed that an 
agent-based model can simulate potential longitudinal 
trajectories for individuals in a cross-sectional sample, 
thereby identifying those who are most likely to contract 
HIV. Similarly, an agent-based model that uses youth 
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characteristics in a particular school or neighborhood 
might be able to identify individuals who are most likely 
to start smoking, which could lead to the development of 
focused interventions. In the same way, an agent-based 
model might be used to evaluate potential scenarios for 
other focused interventions that are aimed at different 
stages of tobacco use.

The second approach uses network data and extends 
static network analysis into a dynamic context. For 
example, several studies have shown that social networks 
play a critical role in accepting specific behaviors, such 
as substance use and even obesity (Christakis and Fowler 
2007), and in smoking cessation (Christakis and Fowler 
2008; Cobb et al. 2011). Data from social networks can 
be problematic because it is almost always incomplete. In 
fact, it is sometimes difficult to define what constitutes a 
network, what kind of relationships should be included as 
connections, and how different network roles can impact 
the network structure (Davis and Carley 2008). Agent-
based models allow social networks to be simulated based 
on known samples and the dynamics of connections to be 
incorporated, and they simulate how positive messages 
are spread through the networks. The most advanced 
models of this kind have been developed in the areas of 
infectious diseases, where the spread of the diseases and 
preventive public messages have been studied exten-
sively (e.g., Modeling of Infectious Disease Agents Study 
[MIDAS] models), and national security, where the spread 
of radical ideas among populations and subgroups have 
been studied extensively (Carley et al. 2011). Cobb and col-
leagues (2011) studied data from Quitnet network, Face-
book, Framingham Study, and AddHealth to examine the 
potential development of agent-based models that could 
guide public health interventions. The role of networks 
has been shown to amplify some messages (i.e., informa-
tion passed to one person can influence several people). 
Other messages tend to die early without being spread 
among the network community. Agent-based models can 
allow various scenarios to be studied and could be used 
to identify key individuals, such as “super-spreaders” or 
“bridges,” for spreading messages (Borgatti and Li 2009; 
Christakis and Fowler 2007).

The third approach applies agent-based models 
at the national level, incorporating higher levels of het-
erogeneity, including spatial (Kirchner et al. 2012). A 
number of models have been created to project smok-
ing patterns in the future (e.g., SimSmoke, University of 
Michigan Tobacco Prevalence and Health Effects Model, 
and Smoking-Attributable Mortality, Morbidity, and 
Economic Costs [SAMMEC]). These models deal with  

different levels of granularity, which is appropriate to fore-
cast an increase or decrease in population-level trends. 
When the goal is complete cessation, however, the model-
ing can shift its scale to more local areas and subpopula-
tions where the risk of smoking initiation is high and/or 
the rate of cessation is low. These subpopulations could 
be localized in terms of specific geographic areas (and be 
dependent on local antitobacco laws) or represent specific 
demographics. In addition, tobacco use can be associated 
strongly with other types of substance use. For example, 
Bobashev and colleagues (2010) showed that tobacco ini-
tiation is associated strongly with alcohol initiation for 
certain age groups. Such associations could suggest that 
a joint tobacco–alcohol intervention might have a stron-
ger effect on the initiation of both substances than just 
one intervention that focuses on tobacco. Thus, increased 
heterogeneity can be captured by estimating and apply-
ing distributions to the population of agents. Estimating 
these distributions is challenging in multivariate spaces, 
especially joint distributions.

Agent-based models have an advantage of being able 
to incorporate multivariate data directly from surveyed 
subjects. This advantage bypasses the estimation of dis-
tributions step, and simulated model outcomes could be 
related to the multivariate sets of input parameters. To 
populate detailed spatial agent-based models, synthetic 
populations can be used, such as those developed at RTI 
International within the framework of the MIDAS coop-
erative agreement (Wheaton et al. 2009). The synthetic 
population is a collection of agents that represent the pop-
ulation of a county, state, and potentially the entire United 
States. The statistical characteristics of the agents—such 
as demography, household size, education level, work 
place environment, and travel pattern—are equivalent 
to the ones of the real population at the block group or 
county level; however, the characteristics of each agent 
are drawn from the corresponding multivariate distribu-
tion. Thus, the synthetic population preserves local fea-
tures of the underlying population but does not violate 
the privacy of individuals who actually reside in the area. 
Agent-based models can link behavioral patterns to char-
acteristics of an agent and consider such characteristics as 
local laws, smoking prevalence, and geographic location.

Finally, agent-based models can be used in data col-
lected in virtual communities, such as Second Life, where 
surveys and interventions could be conducted (Cook et al. 
2009; Murphy et al. 2010). The impact of these data collec-
tion methods in virtual worlds has not been studied suf-
ficiently, but they might have an effect because real people 
are responding behind virtual characters.
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Examples of Simulation Models Used in Tobacco Control

describes several of these models: SimSmoke; University 
of Michigan Tobacco Prevalence and Health Effects Model; 
Tobacco Policy Model (TPM); Benefits of Smoking Cessa-
tion Outcome (BENESCO) model; and Smoking-Attribut-
able Morbidity, Mortality, and Economic Costs (SAMMEC) 
model. This section also describes the Cancer Strategy 
Analysis and Validation Effect (CANSAVE) model, which 
was developed to describe the natural history of cancer, 
not specifically tobacco-related cancer, and has been used 
to simulate the impact of smoking cessation strategies.

SimSmoke

SimSmoke is a tobacco control policy model that 
assesses the impact of tobacco policies on future smok-
ing prevalence and smoking-attributable mortality. Origi-
nally developed for the overall United States, the model 
has been extended to individual states and to several other 
countries. The population in the model is dynamic, chang-
ing through births, deaths, and migration following a dis-
crete, first-order Markov process.

As depicted in Figure 15.1.9 (Levy 2008), SimSmoke 
categorizes the population into never smokers, ever smok-
ers, ex-smokers, and current smokers. The proportion of 
the population in each of these categories changes over 
time because of tobacco initiation, cessation and relapse, 
and births and deaths.

Table 15.1.1 summarizes the main types of simula-
tion models used in tobacco control research. This section 
expands on a subset of aggregate and agent-based simula-
tion models that has been used for tobacco control. The 
selection of these examples is not based upon an extensive 
or systematic review of the scientific literature. The selec-
tion is based upon background work done by NIH Office 
of Behavioral and Social Sciences Research (OBSSR) in 
preparation for a January 2013 meeting (Tobacco Policy 
Modeling Workshop, January 17-18, 2013) to identify the 
best available examples of existing aggregate and agent-
based simulation models. In this selection of tobacco pol-
icy models, the NIH OBSSR built upon its experience in 
setting up Envision, a network of computational modeling 
teams focused on policy interventions to combat obesity.

Examples of Aggregate 
(Compartmental) Simulation 
Models

Aggregate simulation models have been developed 
using a compartmental or a system dynamics approach. 
These models have been developed specifically to esti-
mate the likely path of future smoking rates or to eval-
uate the impact of tobacco policies. This section briefly 

Figure 15.1.9	 Example of the SimSmoke simulation model

Source: Levy 2008.
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Data for use in SimSmoke are taken from the 
Tobacco Use Supplement of the Current Population Sur-
vey, Teenage Attitudes and Practices Survey, Community 
Intervention Trial for Smoking Cessation (from the NCI), 
U.S. Census, the American Cancer Society’s Cancer Pre-
vention Study (CPS) II, and state- and country-specific 
data where appropriate. Policies are added to the model 
through modules that have been developed for different 
types of tobacco control policies. Figure 15.1.10 (Levy 
2008) presents the basic approach to policy analysis 
embedded in SimSmoke.

Figure 15.1.10	  SimSmoke’s basic approach to policy analysis

Source: Levy 2008.
Note: MCH = maternal and child health.

SimSmoke includes separate modules for tobacco 
taxes and price increases, indoor air laws, mass media and 
educational campaigns, youth access laws, and cessation 
strategies. Policies can be evaluated independently or in 
combination. SimSmoke has been validated against his-
torical data (Figure 15.1.11). The model has been used 
to assess the impact of tobacco control policies on rates 
of smoking and related deaths for the United States and 
to examine the attainability of smoking-related goals set 
forth by Healthy People 2010 (Levy et al. 2010d).

For example, simulation models for smoking among 
adults, 18 years of age and older, have examined the 
impact of boosting tobacco control policies (taxes, indoor 
air), mass media, and the components of cessation inter-
ventions and their delivery systems, based on a review 
and quantification of the available scientific evidence that 
provided estimates of the degree to which each compo-
nent of policy and cessation programs would contribute 

to reducing prevalence at the population level (Abrams et 
al. 2010). This review of the evidence base served as the 
starting point for parameter estimates and transitional 
probabilities.

A series of simulations suggested that boosting quit 
attempts, treatment use, and treatment effectiveness by 
100% above 2008 base levels (e.g., annual quit rate among 
counseled smokers who make a quit attempt without 
using any evidence-based treatment assistance estimated 
to be 8%) would lead to moderate-to-dramatic reductions 
in prevalence by as early as 2020, to levels between 6.3% 
and 11.5% (Levy et al. 2010a,b). Building on the model 
of cessation treatments (Levy et al. 2010b), a broader 
simulation model was used to explore the effects on pop-
ulation smoking prevalence of implementing a compre-
hensive tobacco control strategy with four components: 
(1) price increases through cigarette tax increases, (2) 
smoke-free indoor air laws, (3) mass media/educational 
policies, and (4) evidence-based and promising cessation 
treatment policies (Levy et al. 2010d). The goal of the 
model was to examine the relative effectiveness of the 
four policies and their combined contribution to meeting 
the Healthy People 2010 goal of 12% smoking prevalence  
(Figure 15.1.12).

The study showed that implementing all four poli-
cies at the same time would increase the population 
quit rate by 296% to meet the Healthy People 2010 goal 
by 2013 (Levy et al. 2010c). Even with these aggressive 
efforts over a short period, however, the 40% reduction 
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in national smoking prevalence moves the needle from 
20.1% in 2008 to the estimated 12% in 2013 and does not 
end the tobacco epidemic.

Figure 15.1.11 	Validation of SimSmoke against historical data

The set of simulation models also illustrates 
the potential population impact of “systems integra-
tion” of intervention and policy elements, as recom-
mended in Appendix A of Bonnie and colleagues (2007) 
and in the U.S. Department of Health and Human Ser-
vices (USDHHS) strategic plan (USDHHS 2010). The  
HHS strategic plan stated that based on the above set of 
simulation models by Levy and colleagues, “The most 
current and authoritative model of the effect of compre-
hensive tobacco control measures concludes that, with 
all of these interventions implemented simultaneously, 
the Healthy People objective of reducing the adult smok-
ing rate to 12% can be reached by 2020” (USDHHS 2010,  
p. 19).

In another and completely independent model, 
Mendez and Warner (2008) examined what the national 
prevalence rate would be if the comprehensive California 
intervention was extrapolated to the entire nation (Figure 
15.1.13). Their model included the impact of both youth 
prevention programs, policy and taxation, and other ele-
ments in the comprehensive approach taken in Califor-
nia. They also used evidence-based parameter estimates 
and transition probabilities based on actual historical 

Note: PCC = per capita consumption; USDA = U.S. Department of Agriculture.

trends in California. These two very different models both 
suggest that under more ideal conditions the status quo 
prevalence rate of about 17% by 2020 could be dropped 
to about 13–14% with comprehensive policy approaches.

These models provide excellent examples of gap 
analysis between the status quo and what may be done if 
what is known is put into practice and policy under ideal 
conditions.

Simulations have also been conducted to determine 
the impact of policies directed at youth access on smok-
ing prevalence, smoking-related mortality, and smoking 
levels. The use of SimSmoke has been extended to other 
countries, including Argentina (Ferrante et al. 2007), Viet-
nam (Levy et al. 2006), Korea (Levy et al. 2010a), Thailand 
(Levy et al. 2008), and Taiwan (Levy et al. 2005c). Levy 
and Friend (2002a,b) used SimSmoke to examine the 
effects of mandating access to tobacco cessation treatment 
through financial coverage. SimSmoke has also been used 
to examine the impact of various quit attempts, treat-
ment use, and treatment effectiveness scenarios on the 
prevalence of smoking (Levy et al. 2010c). Although the 
original SimSmoke model was designed to be prospective 
in its simulations, it has also been used to evaluate past 
trends in smoking and the role that various tobacco poli-
cies might have played in determining observed smoking 
rates (Levy et al. 2005a).
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Figure 15.1.12	 Effects of a 100% reduction in the quit attempt rate, treatment use, and treatment effectiveness on 
smoking prevalence, 2008–2020

Source: Levy et al. 2010c.

Figure 15.1.13	 Project of U.S. adult smoking prevalence rates under status quo scenario and California rate 
scenarios, 2005–2020

Source: Adapted from Mendez and Warner 2008 with permission of The Sheridan Press, © 2008.
Note: The bottom two lines depict corresponding scenarios assuming that the United States as a whole achieves California’s 2005 rates 
(20% initiation rate and 3.33% cessation rate). The dotted line reflects the assumption that such rates are attained instantaneously (in 
2006), whereas the solid line reflects the more plausible scenario that such rates will be achieved gradually (by 2020). The status quo 
initiation rate is 25%, and the cessation rate is 2.59%
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University of Michigan Tobacco Prevalence and 
Health Effects Model

Mendez and colleagues (1998) initially developed 
a dynamic simulation compartmental model to forecast 
future smoking prevalence and differential mortality by 
smoking status (Figure 15.1.14). The model was later 
expanded to evaluate tobacco control policies. In this 
model, the prevalence of smoking is computed over time 
by tracking the inflow of new smokers and the outflow of 
smokers, the latter being the result of death or smoking 
cessation as the population ages. Sizes of birth cohorts, 
rates of initiation, and rates of age-specific deaths are 
input into the model using data from the National Health 
Interview Survey and the U.S. Statistical Abstracts.

Figure 15.1.14	 Basic structure of the University of Michigan Tobacco Prevalence and Health Effects Model

The model uses historical data to estimate param-
eters of rates of smoking cessation. The model assumes 
that there is no initiation of smoking after 18 years of age, 
and it ignores migration. Given an initial date and a time 
horizon for the analysis, for each subsequent year and 
for each year of age (0–110), the model tracks the popu-
lation of current, former, and never smokers. The model 
allows for a comparison of the impact of different policies 
(through different rates of smoking initiation and cessa-
tion) on future smoking prevalence and mortality by using 

different mortality rates for current, former, and never 
smokers. The model uses data from the CPS II to estimate 
relative risks for current and former smokers. The model 
tracks former smokers by age and number of years since 
quitting (0–30).

Mendez and Warner (2004) and Warner and Mendez 
(2012) validated the model by comparing prevalence pre-
dictions (Mendez et al. 1998) to the observed prevalence 
of smoking, concluding that the observed rates closely 
fit the model’s projections. Figure 15.1.15 compares 
observed and predicted values for smoking prevalence 
among U.S. adults. The model has been used for diverse 
purposes. Mendez and Warner (2000) used the model to 
argue that the smoking prevalence goal (12%) set forth 
in Healthy People 2010 was not feasible in the given time 
frame. Warner and colleagues (2004) used the model to 
evaluate the cost-effectiveness of smoking cessation pro-
grams in managed care organizations. Mendez and War-
ner (2008) employed the model to recommend targets for 
the prevalence of smoking for Healthy People 2020. Based 
on global data from the World Health Organization’s Info-
base database, Mendez and colleagues (2013) calibrated 
the model to evaluate the impact of smoking control poli-
cies on global trends in smoking. Figure 15.1.16 shows  
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predictions from the model that consider different sce-
narios of rates of smoking initiation and cessation for  
U.S. adults.

Figure 15.1.15	 Comparison between observed and predicted values of the prevalence of smoking among U.S. adults, 
University of Michigan Tobacco Prevalence and Health Effects Model

Source: Warner and Mendez 2010. Reprinted with permission from Oxford University Press, © 2010.

Additional details on the Mendez and Warner model 
specifications are provided in Appendix K of Bonnie and 
colleagues (2007). Status quo initiation rates were set at 
25%, which is consistent with the observed prevalence 
within the 18- to 24-year-old group. The status quo for 
cessation rates was based on previous estimates (Mendez 
et al. 1998): 0.21% (18–30 years of age), 2.15% (31–50 
years of age), and 5.97% (51 years of age and older). Initia-
tion and cessation rates for California and Kentucky were 
based on data from 2000 to 2003 from the Behavioral Risk 
Factor Surveillance System.

Tobacco Policy Model

TPM is a computer simulation model that was devel-
oped to calculate the public health gains or losses associ-
ated with changes in the prevalence of smoking and the 
pattern of cigarette use (Tengs et al. 2001b). In the model, 
the population is divided into age and gender cohorts and 
by smoking status (current, former, and never smokers). 
The model incorporates population transitions—such as 
births, deaths, aging, net migration and changes in smok-

ing status in the form of smoking initiation, cessation, 
and relapse. Transition probabilities vary by age, gender, 
smoking status, and year. Outcomes are typically mea-
sured in quality-adjusted life years.

Population data are extracted from several sources: 
U.S. Bureau of the Census; Behavioral Risk Factor Surveil-
lance Survey; National School-Based Youth Risk Behavior 
Survey; National Health Interview Survey, Health Promo-
tion and Disease Prevention Supplement; National Health 
and Nutrition Examination Survey; Current Populations 
Survey’s Tobacco Use Supplement; and the Teenage Atti-
tude and Practice Survey. The model incorporates health-
related quality of life derived from the Quality of Well 
Being Scale.

Simulations using the TPM have evaluated the 
impact of specific tobacco-control policies—such as 
reduced nicotine content in cigarettes on health (Tengs 
et al. 2004, 2005), the impact of a school-based antito-
bacco education program on population health (Tengs et 
al. 2001b), and the effect of increasing taxes on the use 
of cigarettes (Ahmad 2005a,b,c; Ahmad and Franz 2008). 
Using TPM in cost-effectiveness analyses, several studies 
have examined youth access policies (Ahmad 2005a,b,c; 
Ahmad and Billimek 2007). Tengs and colleagues (2001b) 
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assessed the impact of varying levels of reduced rates of 
smoking initiation, increased rates of smoking cessation, 
and reduced rates of smoking relapse on health gains 
among U.S. adults.

Figure 15.1.16	 Predicted rates of smoking initiation and cessation for U.S. adults, University of Michigan Tobacco 
Prevalence and Health Effects Model

Source: Warner and Mendez 2010. Reprinted with permission from Oxford University Press, © 2010.
Note: CR = cessation rate; IR = initiation rate.

Benefits of Smoking Cessation Outcome

BENESCO is a simulation model designed to predict 
smoking-related morbidity and mortality, and it calculates 
the cost-effectiveness of smoking cessation interventions 
(Orme et al. 2001). Individuals are classified into different 
compartments or states as smokers, recent quitters, and 
long-term quitters. Nonsmokers are not included in the 
model. Transition probabilities between states are deter-
mined by smoking status and morbidity status from the 
previous year. Figure 15.1.17 depicts the BENESCO model 
(Orme et al. 2001).

Annemans and colleagues (2009) used the BEN-
ESCO model to determine the cost-effectiveness of 
various cessation interventions in Belgium. Bolin and 
colleagues used the model to evaluate the cost-utility 

of cessation interventions in Sweden (Bolin et al. 2008, 
2009). Howard and colleagues (2008) conducted a simu-
lation using BENESCO of a hypothetical cohort of U.S. 
adult smokers to determine the cost-utility associated 
with smoking cessation strategies. Knight and colleagues 
(2010) used BENESCO to estimate the cost-effectiveness 
of extended smoking cessation treatment compared with  
other strategies.

Smoking-Attributable Morbidity, Mortality, and 
Economic Costs

SAMMEC (see Chapter 12 for a comprehensive dis-
cussion) is designed to estimate the overall disease impact 
of smoking on adults 35 years of age and older and the 
health expenditures of adults 18 years of age and older. 
SAMMEC estimates health and health-related economic 
impacts of smoking, including smoking-attributable 
deaths, years of potential life lost, costs of health care, 
and productivity losses. SAMMEC divides the population 
into stocks of smokers and nonsmokers and applies an  
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attributable-fraction formula—the proportion of cases of 
a disease or death that can be linked to cigarette smok-
ing (Shultz et al. 1991). Emery and colleagues (2001) 
used SAMMEC to evaluate the impact of tobacco tax on 
the health of Latinos in California. The study estimated 
the elasticity of cigarette prices among smokers and the 
effects of a range of increases in cigarette taxes. Kaplan and 
colleagues (2001) estimated the impact of tax increases of 
$0.50 and $1.00 on the prevalence of smoking, population 
mortality and morbidity, and quality-adjusted life years of 
the population of California.

Figure 15.1.17	 Effect of cessation aid on smoking habit, Benefits of Smoking Cessation Outcome (BENESCO) 
model

Source: Orme et al. 2001. Reprinted with permission from BMJ Publishing Group, Ltd., © 2001.

Cancer Strategy Analysis and Validation Effect

CANSAVE is a compartmental Markov model that is 
used for describing the natural history of cancer. Transi-
tion probabilities are estimated from preclinical to clini-
cal, clinical to recovery, and clinical to death. Rates of lung 
cancer are calculated as a function of age and the effective 
years of smoking for smokers and as a function of age for 
nonsmokers. Effects are generated for current smokers, 
former smokers, and never smokers separately and then 
added to obtain the total number of lung cancer deaths 
by age and year. Yamaguchi and colleagues (1991, 1992, 
1994) used CANSAVE to assess the impact of antismoking 
measures and screening in Japan. Figure 15.1.18 shows 
the main constructs of CANSAVE (Yamaguchi et al. 1994).

Cancer Intervention and Surveillance Modeling 
Network (CISNET)

CISNET (http://cisnet.cancer.gov) is a consortium of 
investigators funded by NCI that uses mathematical mod-
eling to study the impact of cancer control interventions 
(e.g., prevention, screening, and treatment) on population 
trends in cancer incidence and mortality for several sites, 
including lung (Feuer et al. 2012). Five academic groups 
were funded under the NCI CISNET mechanism—Fred 
Hutchinson Cancer Research Center, Erasmus Medi-
cal Center, Pacific Institute for Research and Evaluation, 
Rice University/MD Anderson Cancer Center, Yale Univer-
sity—and one affiliated group at Massachusetts General 
Hospital. The consortium of investigators have met semi-
annually to compare their individual modeling approaches 
and to examine differences in a systematic fashion. The six 
CISNET microsimulation lung cancer models were devel-
oped independently to model the natural history of lung 
cancer (McMahon et al. 2012). As part of the research con-
sortium, a set of common population inputs were adopted 
and a common set of outcomes were then selected (Figure 
15.1.19).

As shown in Figure 15.1.19, each model used com-
mon shared components along with model-specific com-
ponents to investigate the contribution of tobacco control 
efforts in the United States since 1964 on reducing lung 

http://cisnet.cancer.gov
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Figure 15.1.18	 Main constructs of the Cancer Strategy Analysis and Validation Effect (CANSAVE) model, a 
Markovian stochastic model of the natural history of lung cancer

Source: Yamaguchi et al. 1994. Reprinted with permission from Environmental Health Perspectives.

Figure 15.1.19	 Schematic of CISNET lung models, illustrating key events in a life history

Source: McMahon et al. 2012. Reprinted with permission from John Wiley and Sons, © 2012.
Note: Key events in a life history, from birth to death, are indicated by the arrow (middle). Smoking histories and other-cause death 
rates are shared components (left side). Cancer events are predicted by each of the six models (right side). LC = lung cancer.
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cancer deaths from 1975–2000. A key component of the 
inputs was three scenarios of the smoking histories of birth 
cohorts in the United States. An updated version of the 
output of the Smoking History Generator for the “actual” 
case scenario is shown in Figures 13.9 and 13.15 in Chap-
ter 13 (Holford et al. in press). Descriptions of the Smok-
ing History Generator methods are provided in Chapter 13 
and in recent publications (Anderson et al. 2012; Holford 
and Clark 2012; Jeon et al. 2012; Rosenberg et al. 2012). 
Based on assumptions about tobacco control (i.e., no 
tobacco control since 1955 vs. all smoking ceased follow-
ing the publication of the 1964 Surgeon General’s report), 
the worst-case and best-case scenarios were generated. The 
smoking histories in birth cohorts included detailed data 
about smoking behaviors, such as smoking intensity and 
duration, and among ex-smokers, duration of quitting.

Table 15.1.2 shows the main differences and simi-
larities across the six CISNET models. All models had the 
capacity to vary inputs from the Smoking History Genera-
tor, as well as estimates of disease risks. However, the six 
models also had significant differences in which aspects 
of the cancer control spectrum received emphasis (e.g., 
screening, tobacco control policies, variations in mortality 
risk) and how the biological relationship between smoking 
and lung cancer was included—for example, several mod-
els used the same two-stage clonal expansion stochastic 
model but calibrated the parameter estimates to different 
cohorts and end-points.

Moolgavkar and colleagues (2012) reported the col-
lective results from the six models, evaluating the impact 
of the three scenarios of smoking histories since 1955 (i.e., 
actual-case, worst-case, best-case) on U.S. lung cancer 
deaths during the interval of 1975–2000. Compared to the 
worst-case scenario (no tobacco control since 1955) versus 
the actual case (declines in rates of smoking initiation and 
smoking intensity and increases in smoking cessation), 
approximately 795,851 lung cancer deaths were averted 
from 1975–2000 in the United States: 552,574 among 
men and 243,277 among women. However, the models 
estimated that this was only about 38% of the deaths that 
could have been averted between 1991–2000 compared to 
the scenario that all smoking ceased following the release 
of the 1964 Surgeon General’s report. From 1975–2000, 
the models estimated that approximately 2,504,042 lung 
cancer deaths could have been averted if tobacco control 
efforts following the release of the 1964 Surgeon General’s 
report were completely effective in eliminating smoking 
behavior as of 1965 (Figure 15.1.20).

As would be expected, the six models yielded a range 
of results. In comparing the actual- and worst-case sce-

narios, the high estimate for lung cancer deaths averted 
was 658,529 for men and the low estimate was 454,517. 
For women, the range of estimates was 333,976 and 
201,788. McMahon and colleagues (2012) analyzed the fac-
tors related to this variation in estimates, and Holford and 
Levy (2012) evaluated the adequacy of the carcinogenesis 
models in estimating populations trends in lung cancer 
mortality in the United States. These more detailed analy-
ses of the performance of individual models provide impor-
tant insights for similar models that are being developed  
and applied.

The models used for the analysis by Moolgavkar and 
colleagues (2012) were expanded to consider all deaths 
rather than just lung cancer deaths, and the time period 
considered was lengthened from 1975–2000 in the ear-
lier models to 1964–2012 (Holdford et al. 2014). In this 
expanded data set the relationship between tobacco con-
trol since 1964 and the number of early deaths avoided, 
life-years saved, and life expectancy gained in the United 
States were estimated. Similar to the earlier model, smok-
ing histories prior to 1964 were used to estimate likely 
future patterns of smoking in the absence of tobacco con-
trol with these estimated patterns serving as the coun-
terfactual scenarios in the models. In the counterfactual 
scenarios, an upper bound and lower bound were esti-
mated. For men, the upper bound was set at 80% smok-
ing prevalence at 30 years of age, based upon the observed 
history of the 1920 birth cohort of men. The actual preva-
lence of smoking among men in 1964 was set as the pri-
mary counterfactual smoking prevalence, and a decline 
to 60% in birth cohorts at 30 years of age was defined as 
the lower bound. For women, the upper bound counter-
factual assumed that smoking prevalence rates in birth 
cohorts would continue to rise up to 70% at 30 years of 
age, 10% below the maximum for men. A more conser-
vative increase up to 60% prevalence at 30 years of age 
was defined as the primary counterfactual, and a decline 
to 50% peak prevalence in birth cohort at 30 years of age 
was defined as the lower bound for women.

For estimating all-cause mortality rates by birth 
cohorts, the methodology developed by Rosenberg and 
colleagues (2012) was used to develop cohort life tables 
by smoking status. Using these life tables, the differences 
between mortality rates for both current or former smok-
ers and never smokers were used to estimate avoidable 
increases in death rates related to exposure to cigarette 
smoking. These differences were calculated by single 
year, calendar year, smoking status, and gender, and then 
summed over the appropriate age range for each calen-
dar year (1964–2012) yielding total premature deaths. 
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Table 15.1.2	 Key differences and similarities across models

Abbreviation E F M P R Y

Institution Erasmus MC FHCRC MGH-HMS PIRE Rice–M.D. Anderson Yale

Model name MISCAN lung TSCE Lung Cancer Policy 
Model

SBC Model Rice Lung Cancer 
Model

Yale Lung Model

Original purposea Screening evaluation Analysis of 
epidemiological data

Screening evaluation Policy evaluation Mortality risk due to 
smoking

Population trends 
and lung cancer

Unit of analysis/smoking histories Microsimulation/ 
Individual

Microsimulation/ 
Individual

Microsimulation/ 
Individual

Macro-level/Group Microsimulation/ 
Individual

Macro-level/Group

Simulation of populations or 
trials/cohorts

Both Both Both Populations Both Populations

Central dose response modela TSCE TSCE Probabilistic/logistic 
regressions

TSCE TSCE TSCE

Parameter source(s)b NHS (F incidence), 
HPFS (M incidence), 
SEER (survival)

NHS (F mortality), 
HPFS (M mortality)

SEER (incidence, 
stage, size, type, 
survival)

CPS II (mortality) MDA CCS (smoking 
histories), NHS 
(F mortality), CPS II 
(M mortality)

NHS (F 
mortality), HPFS 
(M mortality)

Natural history model features            

Histologic cell types 3 (SQ, AD + LC, SC) No 5 (SQ, AD, LC, SC, 
OT)

No No No

Modeling of metastases Implicit Implicit Explicit Implicit Implicit Implicit
Tumor growth No NA Gompertz NA NA NA
Calibration of U.S. lung cancer 
mortality trends

NA PC PC Pc NA APC

Scope of cancer controlsa            
Prevention Yes Yes Yes Yes Yes Yes
Screening Yes No Yes No No No
Treatment Yes No Yes No No No

Source: McMahon et al. 2012. Reprinted with permission from John Wiley and Sons, © 2012.
Notes: Additional details about how parameters were estimated, profiles of the models, and supporting references for the models are available at http://www.cancer.
cisnet.gov/profiles and McMahon and colleagues (2012). AD = adenocarcinoma; APC = age, period, and cohort terms; CPS = Cancer Prevention Study; FHCRC = Fred 
Hutchinson Cancer Research Center; HPFS (M) = Health Professionals Follow-up Study (Males); LC = large cell carcinoma; MC = Medical Center; MDA CCS = M.D. 
Anderson case control study; MGH-HMS = Massachusetts General Hospital-Harvard Medical School; MISCAN = Microsimulation Screening Analysis; NA = not applicable;  
NHS (F) = Nurses’ Health Study (Females); N/SCLC = nonsmall cell and small cell lung cancer; OT = other cell types; P =period terms only; PC = period and cohort terms; 
PIRE = Pacific Institute for Research and Evaluation; SC = small cell carcinoma; SEER = Surveillance, Epidemiology, and End Results; SQ = squamous cell carcinoma; 
TSCE = two-stage clonal expansion.
aDescriptions refer to model versions used for analyses by McMahon and colleagues (2012)and do not reflect earlier published versions or subsequent extensions of 
individual models.
bSee McMahon and colleagues (2012) for details on how sources were used (as inputs or as calibration targets).
cSee McMahon and colleagues (2012) for description of regression model.
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Figure 15.1.20	 Lung cancer death rates and counts for men and women, 30–84 years of age, as observed and 
modeled for tobacco control scenarios, 1975–2000
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Figure 15.1.20	 Continued

Source: Moolgavkar et al. 2012. Reprinted with permission from Oxford University Press, © 2012.
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Examples of Agent-Based 
Simulation Models

RTI International developed an agent-based model 
designed to estimate future smoking-attributable mor-
tality. The model is based on the estimated smoking- 
attributable deaths from 1995–1999 and projects mor-
tality for 2030–2059. Figure 15.1.22 shows the different 
states into which a single individual can transition in the 
model from RTI International (Mann et al. 2008). The 
model also provides a framework for quantitatively inves-
tigating policy-related questions (e.g., how many lives 
can be saved if rates of smoking cessation double) and 
thus allows evaluation of the effects of changes in smok-
ing behaviors on mortality. Although the model is useful 
and provides insight on policy issues, several limitations 
(e.g., letting the agents interact with each other through 
established social networks) could be improved through 
further development.

The Concurrent Technologies Corporation (CTC) 
developed the prototype of an agent-based model to 
address smoking by teenagers (CTC 2010). The model 
integrates effects of multiple interventions using statis-
tics from many peer-reviewed studies. The agents, using 
simple decision rules, display emergent complex behavior. 
Using large-scale experimental design techniques that it 
created and validated, the research team at CTC used the 
model to evaluate potential interventions, describing dif-
ferent investment strategies to abate teenage smoking.

Because this new approach models human decisions 
and multilevel interactions, this model may provide some 
unexpected results. The model more accurately reflects 
the results of individuals’ decisions about their behavior 
(e.g., the decision to smoke or quit smoking). Individuals 
make decisions in the context of multiple roles and influ-
ences in their lives. CTC’s model looks at how people make 
decisions in the context of these multiple roles, allowing 
for impact by, for example, community and societal factors 
and government influences.

Examples of Other Models

Elketroussi and Fan (1992) built a model of smok-
ing cessation and relapse using individual level data from 
smokers who participated in the Multiple Risk Factors 

The differences between the actual and the no tobacco 
control scenarios provided a measure of mortality reduc-
tion related to tobacco control. These estimated data were 
patterns of death by age, years of life lost, and impact on  
life expectancy.

Table 15.1.3 shows the estimated number of prema-
ture deaths related to smoking in the United States over 
the period 1964–2012, compared with the estimated num-
bers of deaths under the counterfactual scenarios. The 
model estimated that between 1964–2012 there were a 
total of 17.7 million smoking-attributable deaths. In com-
parison with the counterfactual scenarios without tobacco 
control, reductions in smoking since 1964 resulted in an 
estimated 8.0 million (lower bound-upper bound scenario 
range from 7.4 to 8.3 million) premature smoking-attrib-
utable deaths averted due to tobacco control.

Table 15.1.4 shows the estimated number of years of 
life lost due to premature death and years saved in com-
parison to counterfactual scenarios. The model estimated 
that a 157 million (lower bound-upper bound scenario 
range from 139 to 165 million) gain in life years was asso-
ciated with tobacco control since 1964. When these esti-
mated years of life gained were considered for the whole 
population, the estimated trend in life expectancy at age 
40 was computed. Figure 15.1.21 shows these trends. For 
men, life expectancy at 40 years of age was estimated to 
have been increased by 7.8 years. The model estimated that 
without tobacco control, life expectancy for men would 
have increased 5.5 years. For women, the increase in life 
expectancy was 5.4 years, and estimated to have been only 
3.8 years without tobacco control. Thus, tobacco control 
was estimated to have contributed 30% of the life gain 
since 1964 for men and 29% for women.

The model results from Holford and colleagues 
(2014) can be compared with the estimates presented in 
Chapter 12, Table 12.15, for smoking-attributable mortal-
ity from 1965–2014. As shown in Table 12.15, the estimated 
total premature deaths caused by smoking and exposure 
to secondhand smoke from 1965–2014 is 20,830,000. The 
modeling by Holford and colleagues (2014) estimated the 
number of smoking-attributable deaths from 1965–2012 
as 17.7 million. However, the time period for this estimate 
was 49 years versus the 50 years estimated in Table 12.15. 
Also, the estimate in Table 12.15 includes deaths attribut-
able to exposure to secondhand smoke (2,457,000), resi-
dential fires (86,000), and conditions related to pregnancy 
and birth due to smoking by the mother (108,000).
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Table 15.1.3	 Estimated smoking attributable deaths (×1,000) avoided by tobacco control

A. All ages

      Primary counterfactual Lower limit Upper limit

  Gender Actual number Number Saved (%) Number Saved (%) Number Saved (%)

1964–1973 Men 2,512 2,867 355 (12) 2,867 355 (12) 2,867 355 (12)

1974–1983 Men 2,711 3,377 665 (20) 3,374 663 (20) 3,380 668 (20)

1984–1993 Men 2,903 3,930 1,027 (26) 3,897 994 (25) 3,953 1,050 (27)

1994–2003 Men 2,744 4,257 1,514 (36) 4,119 1,375 (33) 4,328 1,584 (37)

2004–2012 Men 2,271 4,028 1,758 (44) 3,729 1,458 (39) 4,150 1,879 (45)

Total Men 13,141 18,460 5,319 (29) 17,986 4,845 (27) 18,678 5,537 (30)

1964–1973 Women 497 526 29 (5) 526 29 (5) 526 29 (5)

1974–1983 Women 834 980 146 (15) 979 146 (15) 980 146 (15)

1984–1993 Women 1,148 1,590 442 (28) 1,584 436 (28) 1,591 442 (28)

1994–2003 Women 1,155 2,064 909 (44) 2,028 873 (43) 2,074 918 (44)

2004–2012 Women 895 2,050 1,155 (56) 1,935 1,040 (54) 2,101 1,206 (57)

Total Women 4,529 7,210 2,681 (37) 7,053 2,524 (36) 7,271 2,742 (38)

1964–1973 Both 3,009 3,393 384 (11) 3,393 384 (11) 3,393 384 (11)

1974–1983 Both 3,545 4,357 811 (19) 4,353 808 (19) 4,359 814 (19)

1984–1993 Both 4,052 5,520 1,469 (27) 5,481 1,430 (26) 5,544 1,492 (27)

1994–2003 Both 3,899 6,322 2,423 (38) 6,147 2,248 (37) 6,402 2,503 (39)

2004–2012 Both 3,166 6,079 2,913 (48) 5,664 2,498 (44) 6,251 3,086 (49)

Total Both 17,670 25,670 8,000 (31) 25,039 7,368 (29) 25,950 8,279 (32)

B. Younger than 65 years of age

      Primary counterfactual Lower limit Upper limit

  Gender Actual number Number Saved (%) Number Saved (%) Number Saved (%)

1964–1973 Men 1,335 1,593 258 (16) 1,593 258 (16) 1,593 258 (16)

1974–1983 Men 1,214 1,615 400 (25) 1,612 398 (25) 1,618 403 (25)

1984–1993 Men 1,041 1,613 572 (35) 1,580 539 (34) 1,636 595 (36)

1994–2003 Men 835 1,773 938 (53) 1,636 801 (49) 1,842 1,007 (55)

2004–2012 Men 738 1,975 1,236 (63) 1,708 970 (57) 2,069 1,331 (64)

Total Men 5,164 8,569 3,405 (40) 8,129 2,965 (36) 8,758 3,594 (41)

1964–1973 Women 284 306 22 (7) 306 22 (7) 306 22 (7)

1974–1983 Women 366 443 78 (18) 443 77 (17) 443 78 (18)

1984–1993 Women 347 504 156 (31) 498 151 (30) 504 157 (31)

1994–2003 Women 248 548 300 (55) 513 264 (52) 558 309 (55)

2004–2012 Women 198 649 451 (69) 555 357 (64) 699 500 (72)

Total Women 1,443 2,450 1,007 (41) 2,315 871 (38) 2,510 1,067 (42)

1964–1973 Both 1,619 1,900 281 (15) 1,900 281 (15) 1,900 281 (15)

1974–1983 Both 1,580 2,058 478 (23) 2,055 475 (23) 2,061 481 (23)

1984–1993 Both 1,389 2,117 728 (34) 2,078 689 (33) 2,141 752 (35)

1994–2003 Both 1,083 2,321 1,238 (53) 2149 1,065 (50) 2,400 1,316 (55)

2004–2012 Both 936 2,624 1,687 (64) 2,263 1,327 (59) 2,768 1,831 (66)

Total Both 6,607 11,019 4,412 (40) 10,444 3,837 (37) 11,268 4,661 (41)

Source: Holford et al. 2014. Reprinted with permission from American Medical Association. All rights reserved, © 2014.
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Table 15.1.4	 Years of life lost (×1,000) by tobacco control and gender 

A. All ages

      Primary counterfactual Lower limit Upper limit

  Gender Actual number Number Saved (%) Number Saved (%) Number Saved (%)

1964–1973 Men 40,585 47,579 6,994 (15) 47,579 6,994 (15) 47,579 6,994 (15)

1974–1983 Men 40,625 52,565 11,939 (23) 52,466 11,841 (23) 52,661 12,035 (23)

1984–1993 Men 40,640 59,639 18,999 (32) 58,535 17,895 (31) 60,375 19,735 (33)

1994–2003 Men 37,446 69,866 32,419 (46) 65,676 28,230 (43) 71,838 34,392 (48)

2004–2012 Men 32,287 73,132 40,845 (56) 65,013 32,725 (50) 76,085 43,797 (58)

Total Men 191,584 302,781 111,197 (37) 289,269 97,685 (34) 308,537 116,953 (38)

1964–1973 Women 8,970 9,609 640 (7) 9,609 640 (7) 9,609 640 (7)

1974–1983 Women 13,591 16,305 2,715 (17) 16,293 2,702 (17) 16,305 2,715 (17)

1984–1993 Women 16,852 24,166 7,314 (30) 23,964 7,112 (30) 24,191 7,339 (30)

1994–2003 Women 15,266 30,193 14,927 (49) 29,133 13,867 (48) 30,496 15,230 (50)

2004–2012 Women 11,717 32,103 20,386 (64) 29,166 17,449 (60) 33,585 21,868 (65)

Total Women 66,396 112,377 45,981 (41) 108,164 41,769 (39) 114,187 47,791 (42)

1964–1973 Both 49,555 57,188 7,633 (13) 57,188 7,633 (13) 57,188 7,633 (13)

1974–1983 Both 54,216 68,870 14,654 (21) 68,759 14,543 (21) 68,966 14,750 (21)

1984–1993 Both 57,493 83,805 26,313 (31) 82,499 25,007 (30) 84,566 27,073 (32)

1994–2003 Both 52,712 100,059 47,347 (47) 94,809 42,096 (44) 102,334 49,622 (48)

2004–2012 Both 44,004 105,235 61,231 (58) 94,178 50,174 (53) 109,670 65,666 (60)

Total Both 257,980 415,157 157,178 (38) 397,433 139,454 (35) 422,724 164,744 (39)

B. Younger than 65 years of age

      Primary counterfactual Lower limit Upper limit

  Gender Actual number Number Saved (%) Number Saved (%) Number Saved (%)

1964–1973 Men 12,095 14,589 2,494 (17) 14,589 2,494 (17) 14,589 2,494 (17)

1974–1983 Men 9,876 13,391 3,515 (26) 13,333 3,457 (26) 13,447 3,572 (27)

1984–1993 Men 8,343 13,733 5,390 (39) 13,146 4,802 (37) 14,115 5,772 (41)

1994–2003 Men 7,007 17,282 10,275 (59) 15,386 8,379 (54) 18,089 11,082 (61)

2004–2012 Men 5,792 18,232 12,440 (68) 15,272 9,480 (62) 19,124 13,332 (70)

Total Men 43,113 77,227 34,114 (44) 71,726 28,613 (40) 79,364 36,251 (46)

1964–1973 Women 2,751 2,973 222 (7) 2,973 222 (7) 2,973 222 (7)

1974–1983 Women 2,827 3,427 600 (17) 3,420 593 (17) 3,427 600 (17)

1984–1993 Women 2,270 3,429 1,159 (34) 3,332 1,062 (32) 3,442 1,172 (34)

1994–2003 Women 1,359 3,694 2,336 (63) 3,319 1,961 (59) 3,819 2,460 (64)

2004–2012 Women 1,115 4,314 3,199 (74) 3,627 2,512 (69) 4,783 3,668 (77)

Total Women 10,323 17,838 7,515 (42) 16,672 6,349 (38) 18,444 8,121 (44)

1964–1973 Both 14,847 17,563 2,716 (15) 17,563 2,716 (15) 17,563 2,716 (15)

1974–1983 Both 12,703 16,818 4,114 (24) 16,753 4,050 (24) 16,874 4,171 (25)

1984–1993 Both 10,613 17,162 6,549 (38) 16,478 5,864 (36) 17,557 6,943 (40)

1994–2003 Both 8,366 20,976 12,611 (60) 18,705 10,339 (55) 21,908 13,542 (62)

2004–2012 Both 6,907 22,546 15,639 (69) 18,900 11,993 (63) 23,907 17,000 (71)

Total Both 53,436 95,065 41,629 (44) 88,398 34,962 (40) 97,808 44,372 (45)

Source: Holford et al. 2014. Reprinted with permission from American Medical Association. All rights reserved, © 2014.
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Figure 15.1.21	 Life expectancy at age 40 years by gender

Source: Holford et al. 2014. Reprinted with permission from American Medical Association. All rights reserved, © 2014.
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Intervention Trial. The model incorporated individual 
attributes (e.g., craving, self-efficacy, and motivation) in 
describing any changes in smoking behavior. For each 
individual, the amount of change is a result of that indi-
vidual’s trajectory. Using an agent-based approach, Song 
(2006) and Axtell (2006) incorporated the effects of peers 
in a student’s social network to assess an individual’s prob-
ability of smoking.

Figure 15.1.22	 Individual transition diagram of agent-
based model from RTI International, in 
which an individual has state variables, 
such as disease status, in each state

Source: Mann et al. 2008.

Other simulation models have been used to predict 
quality-adjusted life years (Kaplan et al. 2001; Tengs et al. 
2004, 2005; Ahmad 2005a,b,c); cost savings for medical or 
health care (Ahmad and Franz 2008); the effects of a smok-
ing ban on the risk of acute myocardial infarction (Richi-
ardi et al. 2009); and complex interactions of multiple risk 
factors (including smoking and exposure to secondhand 
smoke), context, and capacity on reducing cardiovascular 
disease at the local level (Homer et al. 2008).

Table 15.1.5 summarizes the models that are dis-
cussed in this section.

Table 15.1.5	 Summary of models

Name of model Type of model Purpose

SimSmoke Aggregate, compartmental Policy and scenario analysis 

University of Michigan Tobacco 
Prevalence and Health Effects Model

Aggregate, compartmental Policy and scenario analysis

Tobacco Policy Model Aggregate, compartmental Policy and scenario analysis

BENESCO Aggregate, compartmental Cost-effectiveness of smoking cessation interventions

SAMMEC Aggregate, compartmental Estimation of health-related economic impact of smoking

CANSAVE Aggregate, compartmental Description of lung cancer progression and evaluation of 
screening policies

RTI Model Agent-based Smoking-related mortality and policy evaluation

CTC Model Agent-based Evaluation of strategies to combat teenage smoking

Note: BENESCO = Benefits of Smoking Cessation Outcome; CANSAVE = Cancer Strategy Analysis and Validation Effect;  
CTC = Concurrent Technologies Corporation; SAMMEC = Smoking-Attributable Morbidity, Mortality, and Economic Costs.
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Recommendations for the Future Use of Modeling  
and Simulation

to the intervention itself—may result. Policy resistance is 
common and has been observed in tobacco control (e.g., 
light cigarettes were intended to reduce harm but people 
smoked them in a compensatory fashion and harm was 
not reduced) (Hatsukami et al. 2006). Therefore, policy-
makers may have to look toward adaptive policies—that 
is, policies that are flexible enough to change as the con-
ditions on which they are based also change. Simulation 
models present an ideal platform to explore such dynami-
cally adaptive policies.

Developing Biobehavioral Models

Tobacco use is addictive. The 2012 Surgeon Gen-
eral’s report reviewed how the onset and maintenance of 
addiction involves the interplay between numerous factors, 
including genetic, physiological, psychological, social, 
and economic, among others (USDHHS 2012). Models 
need to be developed to incorporate advancing biological 
understanding, coming from new lines of investigation, 
such as functional imaging and genetics. Models must be 
capable of bridging scales of analysis to help researchers 
understand how these factors interact and evolve over 
time to result in tobacco use and related behaviors. The 
span of time covered needs to extend from childhood all 
the way to older ages, when cessation is critical for limit-
ing the burden of tobacco-caused disease and morbidity. 
Further longitudinal data are needed to support models 
that cover the lifespan. As noted in the 2012 Surgeon Gen-
eral’s report (USDHHS 2012), a limited amount of cohort 
data are available to study smoking trajectories from ado-
lescence to adulthood. Available evidence indicates that 
adolescent smoking patterns follow different trajectories 
from experimentation to addiction; however, the study of 
how genetic, physiological, psychological, social, and eco-
nomic factors interact in these trajectories could provide 
important insights into prevention policies and programs.

Using Models for Target Setting

Many organizations set goals for addressing public 
health needs. These goals, including those for tobacco 
control, are not always realistic or achievable (Mendez 
and Warner 2000; Levy et al. 2005a,b,c). Furthermore, 

Informing Policy

Simulation models are an essential tool in the 
tobacco-control arsenal. They provide a view of the future 
impact of tobacco-control policies given the best knowl-
edge of present effects. The tobacco epidemic is extremely 
complex and amenable to a variety of interventions. These 
interventions may interact with each other and may have a 
combined effect that is not anticipated. Simulation mod-
els provide a representation of reality, making it possible 
to examine the likely effects of policies before their actual 
impact can be observed. Simulation models can also warn 
about potentially unfavorable interactions among poli-
cies that have already been implemented. Models can be 
used to project the consequences of proposed solutions 
and visualize how proposed solutions will interact in a 
single environment. For example, the individual decision 
to smoke depends in part on the environment in which 
the individual is immersed. Young people start smoking 
in large part because of peer pressure, and having friends 
who smoke is a determinant of whether an individual con-
tinues to smoke (USDHHS 2012). Simulation models can 
be used to understand how smoking behavior is modu-
lated by, and propagated through, social networks and 
how social networks might be used to curb smoking. 

Consequently, as the tobacco problem continues 
to change (e.g., with an increasing diversity of products), 
simulation modeling will become even more useful for 
informing policy decisions and crafting interventions. 
Policymakers and intervention specialists cannot directly 
observe the counterfactual (i.e., what would have hap-
pened if policies and interventions had taken a different 
course), but simulation modeling can help to identify the 
tradeoffs associated with policy and intervention decisions 
regarding the underlying system.

Designing Adaptive Policies

In many complex systems, including those of 
tobacco control, interventions designed to alter such sys-
tems in a desired way are often met with compensatory 
measures (e.g., the response by the tobacco industry to 
an effective policy action). Policy resistance (Sterman 
2000)—referring to the intended effects of a system inter-
vention being delayed, defeated, or diluted by the response 
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stakeholders are much more likely to have a solid under-
standing of the model’s capabilities and limitations and 
of assumptions made. Lessons can be learned from those 
who have been successful in convincing policymakers of 
the utility of models (Ferencik and Minyard 2011; Glasser 
et al. 2011).

Establishing Standards of Good 
Practice for Modeling

For the purpose of tobacco control, as in other 
applications, standards of good practice are necessary 
for model documentation, transparency, verification, 
validation, reporting, sharing, and interoperability. Stan-
dards should also be developed for base case scenarios for 
tobacco control modeling. Establishing such a referent 
set will allow different models and modeling approaches 
to reference the same base case and will facilitate com-
parisons of policy impact across models. Standards for 
model reporting may also be developed to help stake-
holders understand and interpret results of the model. In 
addition, standards for education and training should be 
developed for tobacco-control researchers who want to 
collaborate with modelers and use modeling in their work. 
These standards of good practice will be instrumental for 
facilitating interactions between community leaders, poli-
cymakers, and others who will use and potentially benefit 
from decisions made based on the results of modeling.

some goals are written broadly and do not acknowledge 
the possibility of significant differences in what subgroups 
of a population can achieve, based on where they start. 
Healthy People 2020 included modeling as a target setting 
method but it was not used to develop all of the targets. 
Nonetheless, targets have been set for tobacco control 
by diverse organizations, including USDHHS. Models 
can provide useful guidance on setting aspirational but 
achievable targets and test packages of policies for their 
likely success in meeting various targets. 

Engaging Stakeholders

Community-based research has demonstrated the 
benefits of working directly with affected constituencies 
when conducting research on problems that affect the 
community and when developing potential solutions. 
Many modeling methodologies have a strong history of 
including stakeholders in all facets of the modeling pro-
cess. Doing so can enhance buy-in and strengthen the 
implementation of policies and their impact. In addition, 
policymakers often have particular questions in which 
they are interested. When models are developed without 
engagement of policymakers, the models may not ade-
quately address the specific questions or the results may 
not be well-suited to the questions. Therefore, the model-
ing process should engage stakeholders (including policy-
makers and community leaders, where possible) early and 
often, beginning with identifying the questions to be mod-
eled. Moreover, by engaging in the process throughout, 

Summary

This Appendix examines how simulation modeling is 
used in tobacco control research and policy development. 
Currently, two main types of simulation models are used: 
aggregate or compartmental models and individual-based 
(particularly agent-based) models.

Aggregate models follow the dynamic path of homo-
geneous entities or groups of interest, such as the number 
of smokers in the population. System dynamics models 
are a specific type of aggregate model that emphasize com-
plex and often nonlinear interactions and feedback effects 
among the elements of the system being modeled. Agent-
based models, the main type of individual model in use for 
tobacco control purposes, follow individuals, incorporat-

ing their unique characteristics and complex interactions 
within their specific environments and social networks.

This review showed that models are gaining increas-
ing prominence in the field of tobacco control. Models have 
been used for various purposes, ranging from estimating 
the future path of smoking prevalence and consump-
tion to estimating the health effects of past, current, and 
future use of tobacco in the population and to evaluating 
the potential impact of tobacco control policies on tobacco 
use and health effects. Models will be a critical tool for 
setting strategies intended to further reduce tobacco use, 
particularly as approaches are tailored to reduce smoking 
in population groups with high rates of prevalence and to 
further lower overall prevalence.
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Conclusions

1.	 Models are a useful tool for selecting, evaluating, and 
refining tobacco-control strategies. They can be used 
to assess the consequences of past interventions and 
to project the consequences of various policy options 
to guide decision making.

2.	 Models are available that can reflect the complexi-
ties of the tobacco epidemic and the dynamic conse-
quences of tobacco control.

3.	 Models have already proved useful in tobacco con-
trol and best practices have been developed for  
their application.

4.	 Based upon the preliminary results of models 
reviewed, evidence suggests that in the next phase of 
tobacco control, as efforts are made to push preva-
lence rates to ever lower levels, models will be a key 
tool for designing strategies to address groups with 
high rates of prevalence and to hasten the end of the 
tobacco epidemic.
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