Advisory Committee on Heritable Disorders in Newborns and Children

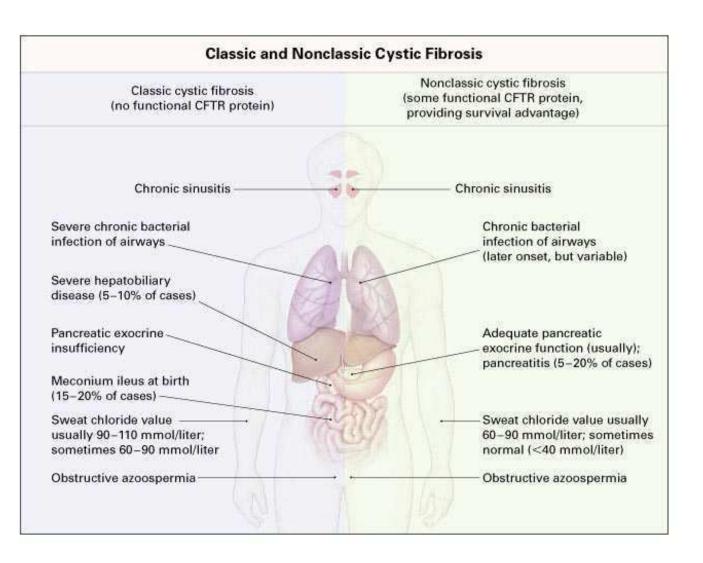
Rare Disease Registries Panel April 23, 2019

Bruce C. Marshall, MD Senior VP of Clinical Affairs Cystic Fibrosis Foundation

Disclosures

The CF Foundation has business relationships with Abbvie, Allergan, Digestive Care, Mylan, Vertex and Vivus for the conduct of post-approval research studies.

Outline

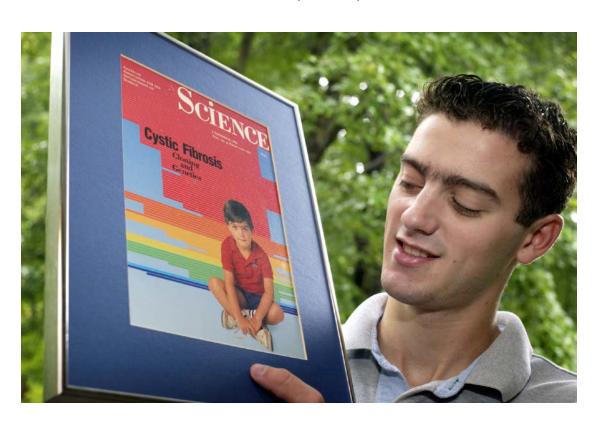

- Context
- Patient registry the basics
- How the registry data is used
- Intersection of registry and CF NBS
- Q & A

Cystic Fibrosis

- Autosomal recessive disease
 - <u>+</u> 35,000 US patients (<u>+</u> 100,000 worldwide)
- Most common life-shortening inherited disease of Caucasians
- Complex, multisystem chronic disease
 - Majority of deaths due to lung disease

CF: Complex, Multisystem Chronic Disease

Other important co-morbidities

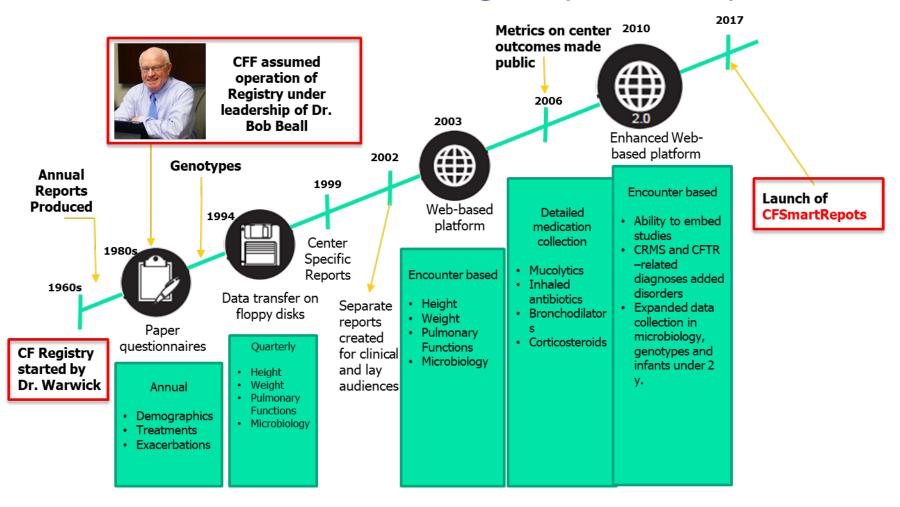

CF-related diabetes Anxiety/depression

ABPA Pulmonary NTM

Identification of the Cystic Fibrosis Gene: Genetic Analysis

Bat-sheva Kerem, Johanna M. Rommens, Janet A. Buchanan, Danuta Markiewicz, Tara K. Cox, Aravinda Chakravarti, Manuel Buchwald, Lap-Chee Tsui

Science; 1989; 245(4922): 1073-1080



CFF Medical and Scientific Activities

- Center Network
- Peer review accreditation
- Patient Registry
- Quality Improvement
- Practice Guidelines

CFF Patient Registry History

Approximately 85% of individuals with CF in the US enrolled Ann Am Thorac Soc Vol 13, No 7, pp 1173–1179, Jul 2016

CF Foundation Patient Registry: IRB-Approved, Patient-Consented Observational Study

WHAT TYPES OF INFORMATION CAN YOU FIND IN THE CYSTIC FIBROSIS FOUNDATION PATIENT REGISTRY?

- Age at diagnosis
- Method of diagnosis: newborn screening, respiratory and/or gastrointestinal symptoms, failure to thrive

- CFTR gene mutations
- Sweat test results

- Age Sex
- Race
- Ethnicity
- Vital status
- State of residence Personal and parental
- education

- Marital status
- Smoking status · Health insurance coverage
- Employment status

- · Location of care: clinic, hospital or home
- Providers seen during clinic visit
- Reason for hospitalization: pulmonary exacerbation, transplant, gastrointestinal
- Length of hospital stay

- Antibiotics
- Mucus thinners
- Bronchodilators Anti-inflammatories
- Airway clearance techniques
- Pancreatic enzymes
- Nutritional supplements

- CFTR modulators
- · Growth hormone
- Oxygen

MEASUREMENTS & SCREENING TESTS

- CF-related diabetes
- Asthma
- Sinus disease
- Gastroesophageal (acid) reflux disease (GERD)
- Liver disease
- Allergic bronchial pulmonary aspergillosis (ABPA)
- Osteoporosis
- Depression and anxiety
- Pregnancy

kidney

- Transplant: lung, liver,
- Height and weight · Lung function
- Cultures:
- Pseudomonas aeruginosa, Staphylococcus aureus, Burkholderia cepacia complex, nontuberculous mycobacteria
 - Pancreatic function Screenings: mental health, bone health, CF-related diabetes
- · Blood tests: glucose, liver & kidney function, vitamin levels

Data entered by: Care center teams

Data entry incentivized by:

- User and financial support by CFF
- Broad use of registry data

Data quality facilitated by:

- Data entry guidelines
- Annual data validations of key variables
- Annual "deduping" of records
- Educated and dedicated stakeholders

Data quality is confirmed by:

Selective audits of registry data

See the Annual Data Report for a full list of the data collected by the CF Foundation Patient Registry: www.cff.org/Our-Research/CF-Patient-Registry. Questions? Email us at pfrac@cff.org.

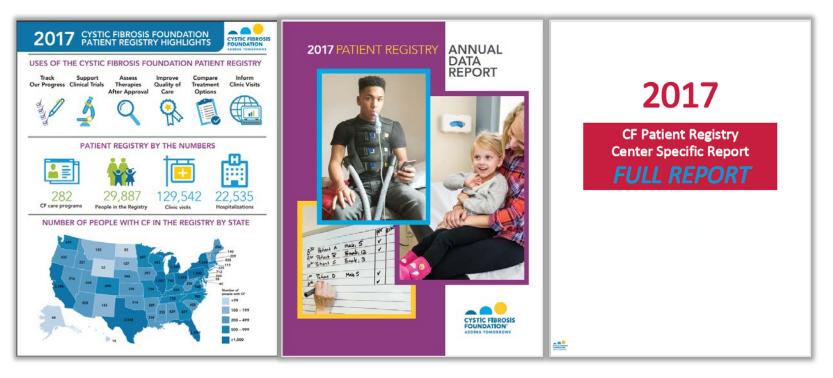
Uses of the Cystic Fibrosis Foundation Patient Registry

DISEASE SURVEILLANCE

FRAMEWORK FOR CLINICAL TRIALS

POST-MARKETING SURVEILLANCE STUDIES

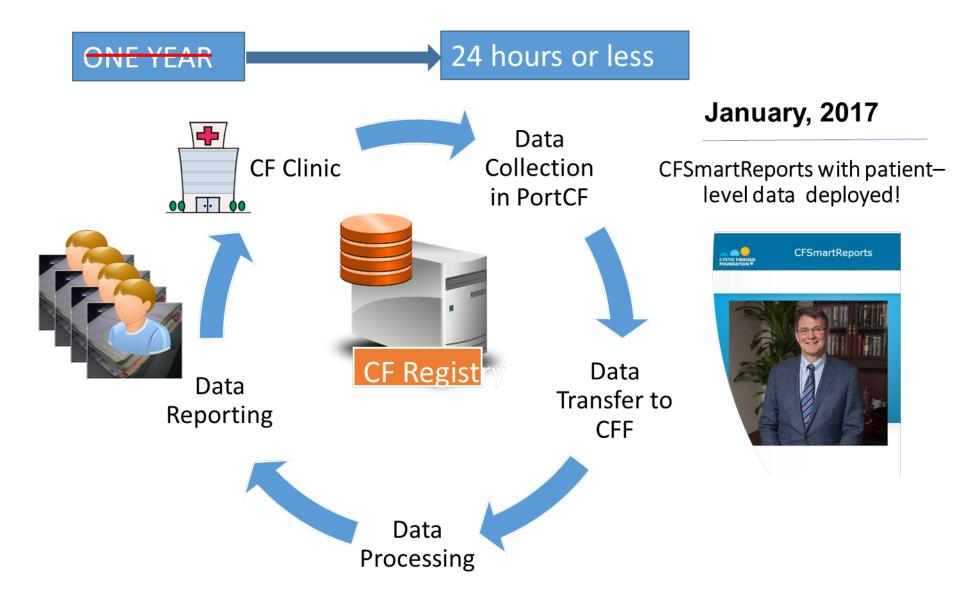
QUALITY


COMPARATIVE EFFECTIVENESS RESEARCH

Track progress in curing CF and the impact of treatments

Test promising new therapies Ensure safety and effectiveness of approved products Provide all patients with high-quality care Promote evidence-based clinical decision making

CF Foundation Registry Annual Reports



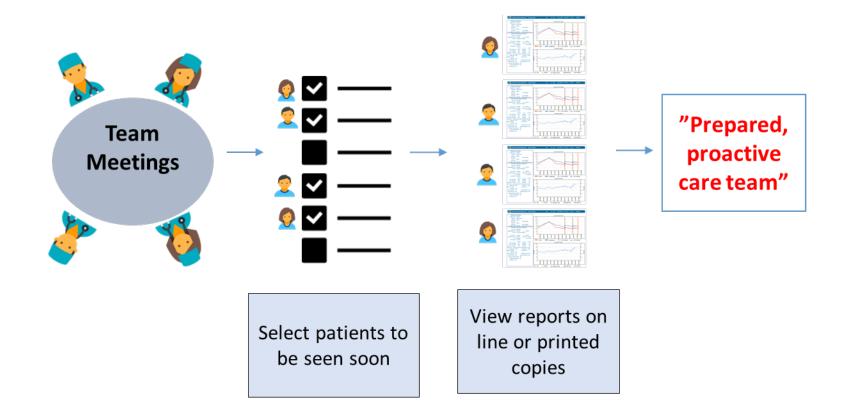
Highlights Report

Annual Data Report

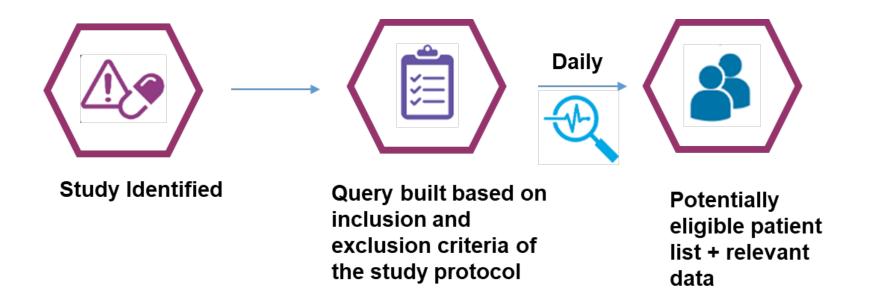
Center-Specific Report

CF SmartReports: Driving Improvements in Care

Patient Summary Report



Hospitalizations and home IV's on FEV1 trend chart


Microbiology and other key data

... and much more on other three pages!

Pre-visit planning using CFSmartReports

Screening for Clinical Trials

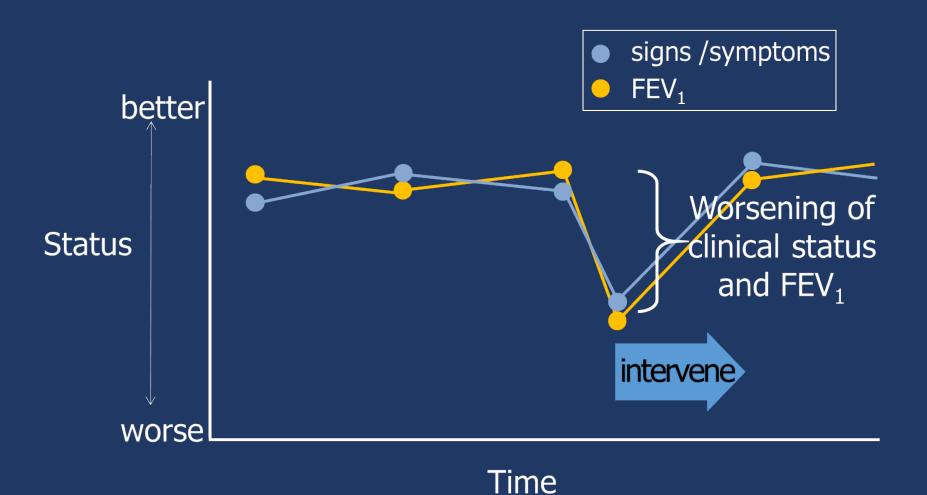
Uses of the Cystic Fibrosis Foundation Patient Registry

DISEASE SURVEILLANCE

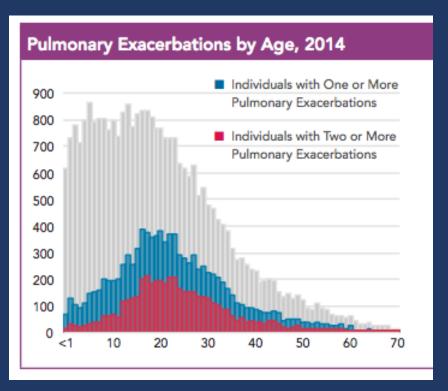
FRAMEWORK FOR CLINICAL TRIALS

POST-MARKETING SURVEILLANCE STUDIES

QUALITY


COMPARATIVE EFFECTIVENESS RESEARCH

Track progress in curing CF and the impact of treatments


Test promising new therapies Ensure safety and effectiveness of approved products Provide all patients with high-quality care Promote evidence-based clinical decision making

What is a Pulmonary Exacerbation?

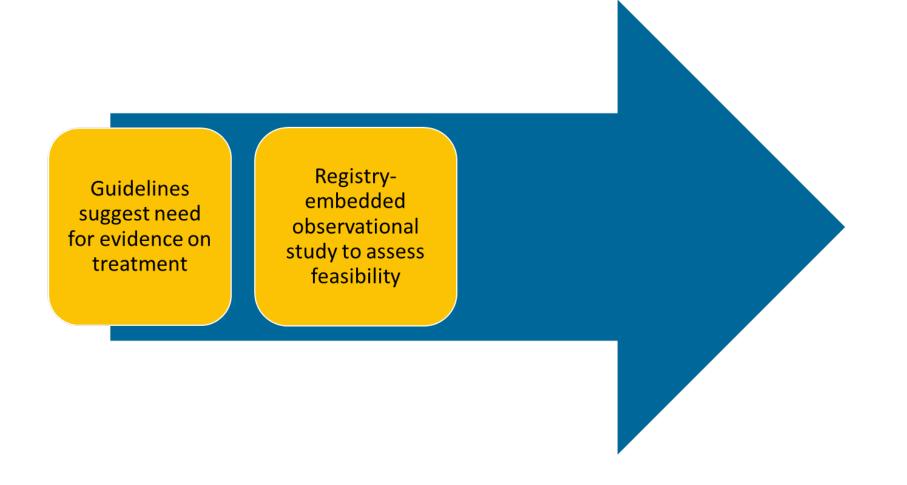
Why are exacerbations important?

Common events

- Major driver of cost
- Negative impact on quality of life
- Associated with decreased survival

Predictive 5-Year Survivorship Model of Cystic Fibrosis

Theodore G. Liou^{1,2}, Frederick R. Adler^{3,4}, Stacey C. FitzSimmons^{5,9}, Barbara C. Cahill^{1,2,6}, Jonathan R. Hibbs⁷, and Bruce C. Marshall^{1,2,8}


Validated 5-year logistic regression survivorship model for cystic fibrosis,* Cystic Fibrosis Foundation Patient Registry, United States, 1993

Covariate [†] (x_{0-10})	Coefficient		Odds	FEV ₁ % [‡]
	$\overline{\beta_{0-10}}$	SE [‡]	ratio	equivalence§
(Intercept)	1.93	0.27	6.88	50
Age (per year)	-0.028	0.0060	0.97	-0.7
Gender (male = 0, female = 1) $FEV_1\%$ (per %)	-0.23 0.038	0.10 0.0028	0.79 1.04	-6 1
Weight-for-age z score	0.40	0.053	1.50	10
Pancreatic sufficiency (0 or 1)	0.45	0.31	1.58	12
Diabetes mellitus (0 or 1)	-0.49	0.15	0.61	-13
Staphylococcus aureus (0 or 1)	0.21	0.12	1.24	6
Burkerholderia cepacia (0 or 1)	-1.82	0.30	0.16	-48
No. of acute exacerbations (0-5)	-0.46	0.031	0.63	-12
No. of acute exacerbations * B. cepacia	0.40	0.12	1.49	10

Hosmer-Lemeshow p value = 0.54; no significant difference between predicted and actual survivorship of the validation group of patients (31).

"Each pulmonary exacerbation had an unexpectedly large negative impact on 5-year survival equivalent to subtracting 12% from the measured FEV1% value."

Standardized Treatment Of Pulmonary Exacerbations

STOP Trial: Achievement of Aims

Aim	Findings	
Expand capability of registry	 Registry was successfully used to conduct study 	
Establish equipoise for future interventional studies	 Willingness of sites to participate in most (but not all) trial designs 	
Inform the design of future research of exacerbations	 Established variance for key outcome measures 	
Build consortium of centers to enable design and conduct of interventional trials	 High degree of engagement Significant enthusiasm from wider CF community 	

Standardized Treatment Of Pulmonary Exacerbations

Guidelines suggest need for evidence on treatment Registryembedded observational study to assess feasibility

Survey clinician and patient/family communities

RCT to determine optimal treatment duration

Intersection of CF NBS and Registry

- Assess performance of NBS (e.g., false negatives)
- Track time from birth to entry into the CF care delivery system to facilitate improvement efforts
- Clinical follow-up of CF cases and CF Screen Positive,
 Indeterminant Diagnosis (CF-SPID) cases

CF NBS Metrics Derived from Registry Data

	2010-2012	2013-2016	P Value
Age at first care center event (days) Median (n)	11 (1825)	8 (2333)	0.003*
Age at first care center event (days) Mean (SD)	17.6 (24.31)	15.1 (22.73)	<0.001*
Patients with false negative NBS, n (%)*	79 (4.1%)	98 (4.0%)	0.995

^{*} Patients diagnosed with CF, but not detected through NBS

Outcomes of Infants With Indeterminate Diagnosis Detected by Cystic Fibrosis Newborn Screening

Clement L. Ren, MD^a, Aliza K. Fink, DSc^b, Kristofer Petren, BS^b, Drucy S. Borowitz, MD^c, Susanna A. McColley, MD^d, Don B. Sanders, MD, MS^c, Margaret Rosenfeld, MD, MPH^c, Bruce C. Marshall, MD^b

CFF Guideline Diagnosis

	or reducem to braginosis		
Registry Diagnosis	CF	CRMS	
CF	1,532	126	
CRMS (i.e., CFSPID)	8	183	
Total	1,540	309	
% of Total	83.2	16.7	

41% with CFSPID cases entered with CF diagnosis Misclassification Bias?

CF Foundation Patient Registry: Summary

Highly impactful asset used effectively for multiple purposes. Developing and operating the registry is labor and resource intensive, but the value to the CF community continues to increase over time.

Outline

- Context
- Patient registry the basics
- How the registry data is used
- Intersection of registry and CF NBS
- Q & A