# Preconception Health & Health Care: A Life-Course Perspective

#### Michael C. Lu, MD, MPH

Associate Professor Department of Obstetrics & Gynecology David Geffen School of Medicine at UCLA Department of Community Health Sciences UCLA School of Public Health

Secretary's Advisory Committee on Infant Mortality January 24, 2008

# What is Preconception Care?

A set of interventions that aim to identify and modify biomedical, behavioral, and social risks to a woman's health or pregnancy outcome through prevention and management.

Johnson K, Posner SF, Biermann J, Cordero JF, Atrash HK, Parker CS, Boulet S, Curtis MG; CDC/ATSDR Preconception Care Work Grou Select Panel on Preconception Care. Recommendations to improve preconception health and health care--United States. A report of the CDC/ATSDR Preconception Care Work Group and the Select Panel on Preconception Care. MMWR Recomm Rep. 2006 Apr 21;55(RR-6):1

# **What Is Preconception Care?**

#### **Risk Assessment**

- Reproductive life plan
- Past pregnancy history
- Past medical & surgical history
- Medications & allergies
- Family & genetic history
- Social history
- Behavioral & nutritional assessment
- Mental health
- Laboratory testing

#### Health Promotion

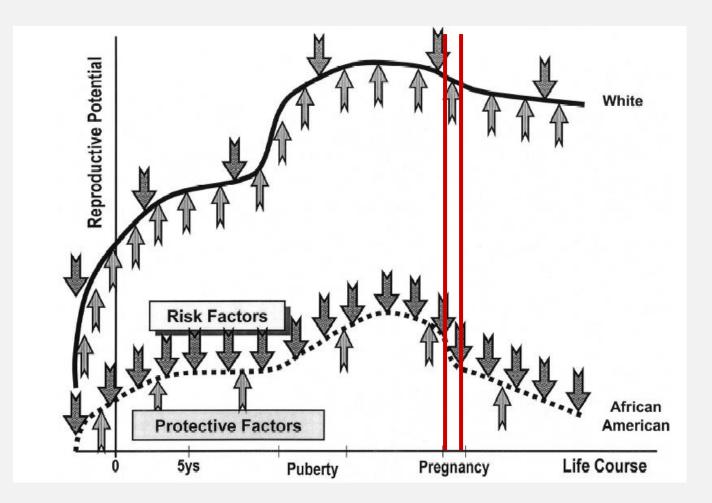
- Family planning
- Stress resilience
- Nutritional preparedness
- Immune allostasis
- Healthy environment

#### Medical & Psychosocial Interventions

- Individualized for identified risks
- Preventive services and primary care

Lu MC. Recommendations for preconception care. Am Fam Physician. 2007;76:397-400.

#### Summary of the CDC/ATSDR Select Panel's Recommendations to Improve Preconception Health and Health Care in the United States


- Recommendation 1. Individual responsibility across the life span. Each woman, man and couple should be encouraged to have a reproductive life plan.
- Recommendation 2. Consumer awareness. Increase public awareness of the importance of preconception health behaviors and preconception care services by using information and tools appropriate across various ages; literacy, including health literacy; and cultural/linguistic contexts.
- Recommendation 3. Preventive visits. As a part of primary care visits, provide risk assessment and educational and health promotion counseling to all women of childbearing age to reduce reproductive risks and improve pregnancy outcomes.
- Recommendation 4. Interventions for identified risks. Increase the proportion of women who receive interventions as follow-up to preconception risk screening, focusing on high priority interventions (i.e. those with evidence of effectiveness and greatest potential impact).
- Recommendation 5. Interconception care. Use the interconception period to provide additional intensive interventions to women who have had a previous pregnancy that ended in an adverse outcome (i.e., infant death, fetal loss, birth defects, low birthweight, or preterm birth).
- Recommendation 6. Prepregnancy checkup. Offer, as a component of maternity care, one prepregnancy visit for couples and persons planning pregnancy.
- Recommendation 7. Health insurance coverage for women with low incomes. Increase public and private health insurance coverage for women with low incomes to improve access to preventive women's health and preconception and interconception care.
- Recommendation 8. Public health programs and strategies. Integrate components of preconception health into existing local public health and related programs, including emphasis on interconception interventions for women with previous adverse outcomes.
- Recommendation 9. Research. Increase the evidence base and promote the use of the evidence to improve preconception health.
- Recommendation 10. Monitoring improvements. Maximize public health surveillance and related research mechanisms to monitor preconception health.

Johnson K, Posner SF, Biermann J, Cordero JF, Atrash HK, Parker CS, Boulet S, Curtis MG; CDC/ATSDR Preconception Care Work Grou Select Panel on Preconception Care. Recommendations to improve preconception health and health care--United States. A report of the CDC/ATSDR Preconception Care Work Group and the Select Panel on Preconception Care. MMWR Recomm Rep. 2006 Apr 21;55(RR-6):1

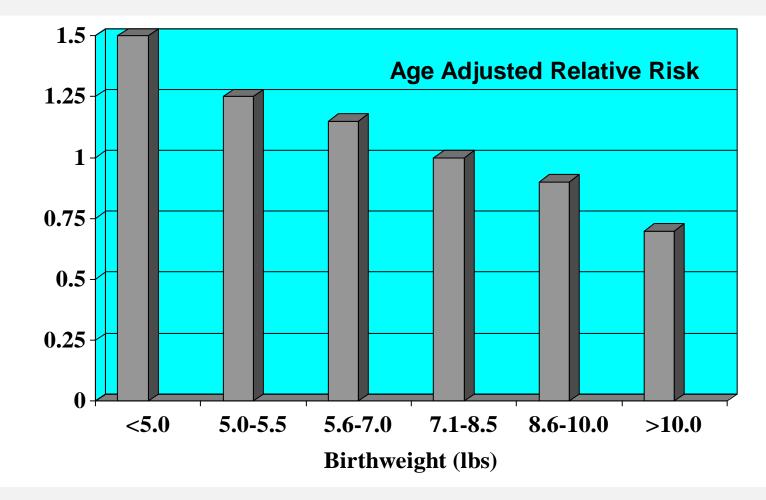
# **Life-Course Perspective**

A way of looking at life not as disconnected stages, but as an integrated continuum

### **Life Course Perspective**

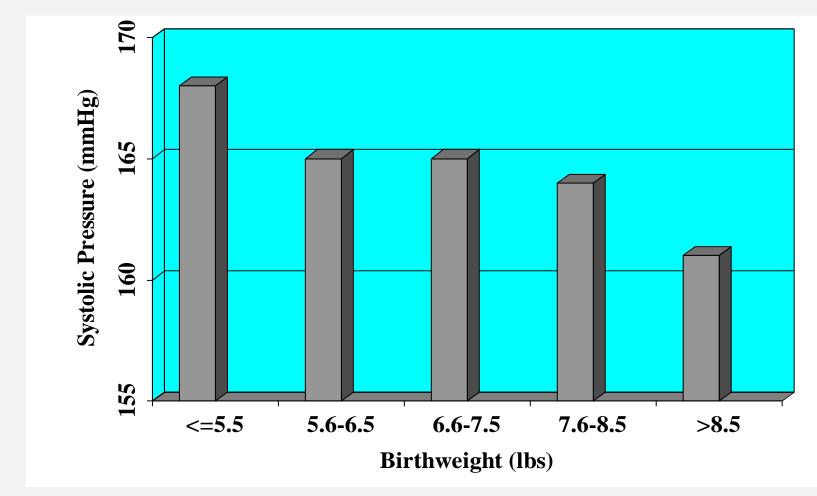


Lu MC, Halfon N. Racial and ethnic disparities in birth outcomes: a life-course perspective. Matern Child Health J. 2003;7:13-30.


# **Life Course Perspective**

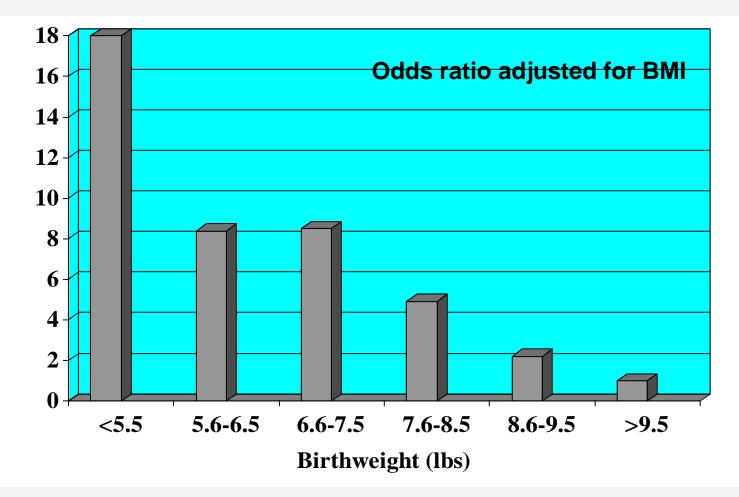
- **Early programming**
- Cumulative pathways
- Preconception health & healthcare

Early Programming




### Barker Hypothesis Birth Weight and Coronary Heart Disease



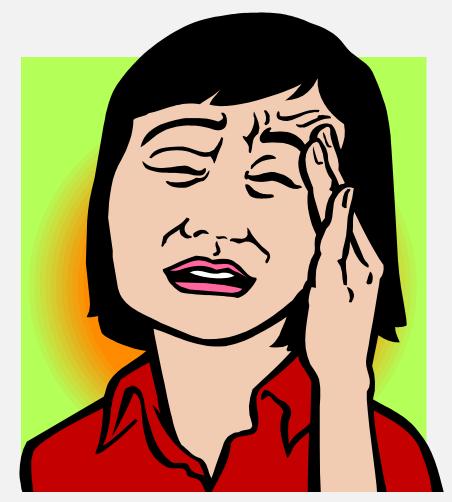

Rich-Edwards JW, Stampfer MJ, Manson JE, Rosner B, Hankinson SE, Colditz GA et al. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. Br Med Jr 1997;315:396-400.

### Barker Hypothesis Birth Weight and Hypertension



Law CM, de Swiet M, Osmond C, Fayers PM, Barker DJP, Cruddas AM, et al. Initiation of hypertension in utero and its amplification throughout life. Br Med J 1993;306:24-27.

### Barker Hypothesis Birth Weight and Insulin Resistance Syndrome




Barker DJP, Hales CN, Fall CHD, Osmond C, Phipps K, Clark PMS. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (Syndrome X): Relation to reduced fetal growth. Diabetologia 1993;36:62-67.

### Barker Hypothesis Birth Weight and Insulin Resistance Syndrome

| Birth      | <5.5 | 5.6-6.5 | 6.6-7.5 | 7.6-8.5 | 8.6-9.5 | >9.5 |
|------------|------|---------|---------|---------|---------|------|
| weight     |      |         |         |         |         |      |
| Odds Ratio | 18   | 8.4     | 8.5     | 4.9     | 2.2     | 1    |

### **Maternal Stress & Fetal Programming**



### **Prenatal Stress & Programming of the Brain**

#### Prenatal stress (animal model)

#### Hippocampus

□ Site of learning & memory formation

□ Stress down-regulates glucocorticoid receptors

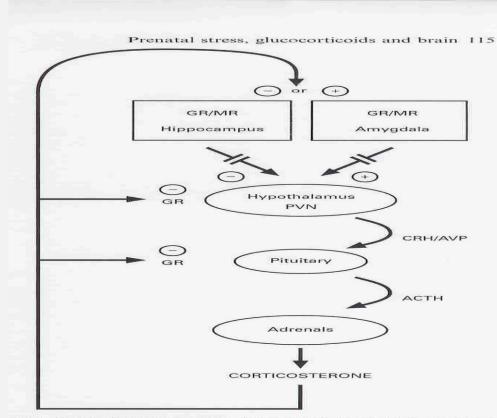
Loss of negative feedback; overactive HPA axis

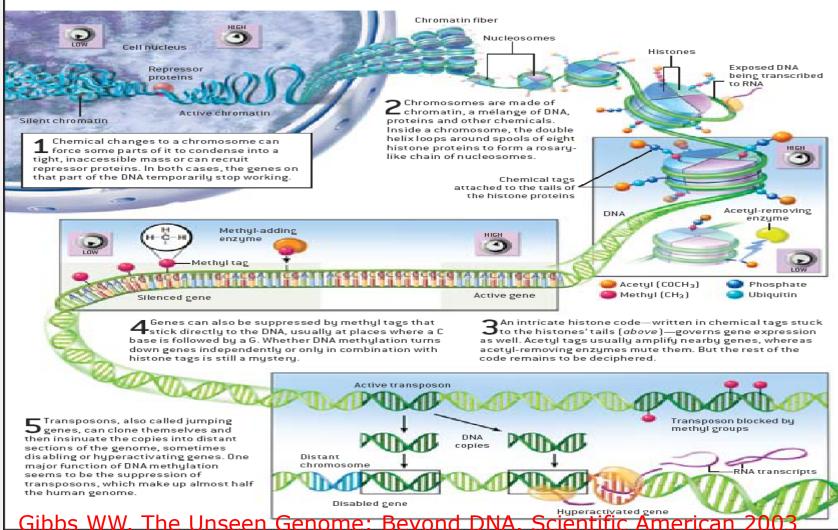
#### Amygdala

- □ Site of anxiety and fear
- □ Stress up-regulates glucocorticoid receptors
- Accentuated positive feedback; overactive HPA axis

Welberg LAM, Seckl JR. Prenatal stress, glucocorticoids and the programming of the brain. J Neuroendocrinol 2001;13:113-28.

### Prenatal Programming of the Hypothalamic-Pituitary-Adrenal Axis





Fig. 1. Schematic representation of the hypothalamic-pituitary-adrenal (HPA) axis. GR, glucocorticoid receptor; MR, mineralocorticoid receptor; PVN, paraventricular nucleus; CRH, corticotropin-releasing hormone; AVP, arginine vasopressin; ACTH, adrenocorticotropic hormone.

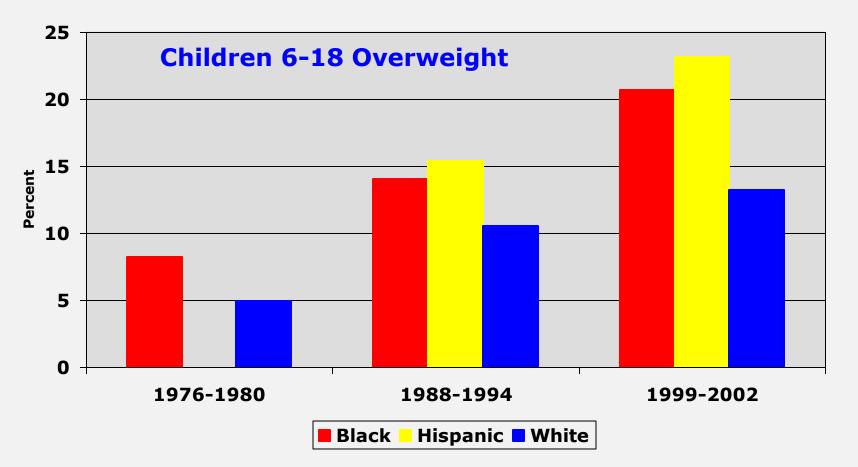
Welberg LAM, Seckl JR. Prenatal stress, glucocorticoids and the programming of the brain. J Neuroendocrinol 2001;13:113-28.

# **Epigenetics**

#### VOLUME CONTROLS FOR GENES

THE DNA SEQUENCE is not the only code stored in the chromosomes. So-called epigenetic phenomena of several kinds can act like volume knobs to amplify or mute the effect of genes. Epigenetic information is encoded as chemical attachments to the DNA or to the histone proteins that control its shape within the chromosomes. Among their many functions, the epigenetic volume controls muffle parasitic genetic elements, called transposons, that riddle the genome.




### **Epigenetics** Same Genome, Different Epigenome



R.A. Waterland, R.A. Jirtle, "Transposable elements: targets for early nutritional effects on epigenetic gene regulation," *Mol Cell Biol*, 23:5293-300, 2003. Reprinted in the New Scientist 2004

# Prenatal Programming of Childhood Obesity OBESITY: A Weighty Issue for Children

#### **Epidemic of Childhood Overweight & Obesity**



Source: National Center for Health Statistics, National Health and Nutrition Examination Survey

Note: Estimate not available for 1976-1980 for Hispanic; overweight defined as BMI at or above the 95<sup>th</sup> percentile ofr the CDC BMI-for-age growth charts

#### Prenatal Programming of Childhood Overweight & Obesity

Matern Child Health J DOI 10.1007/s10995-006-0141-8

ORIGINAL PAPER

#### Prenatal Programming of Childhood Overweight and Obesity

Jennifer S. Huang · Tiffany A. Lee · Michael C. Lu

© Springer Science+Business Media, LLC 2006

Abstract Objective: To review the scientific evidence for prenatal programming of childhood overweight and obesity, and discuss its implications for MCH research, practice, and policy.

Methods: A systematic review of observational studies examining the relationship between prenatal exposures and childhood overweight and obesity was conducted using MOOSE guidelines. The review included literature posted on PubMed and MDConsult and published between January 1975 and December 2005. Prenatal exposures to maternal diabetes, malnutrition, and cigarette smoking were examined, and primary study outcome was childhood overweight or obesity as measured by body mass index (BMI) for children ages 5 to 21.

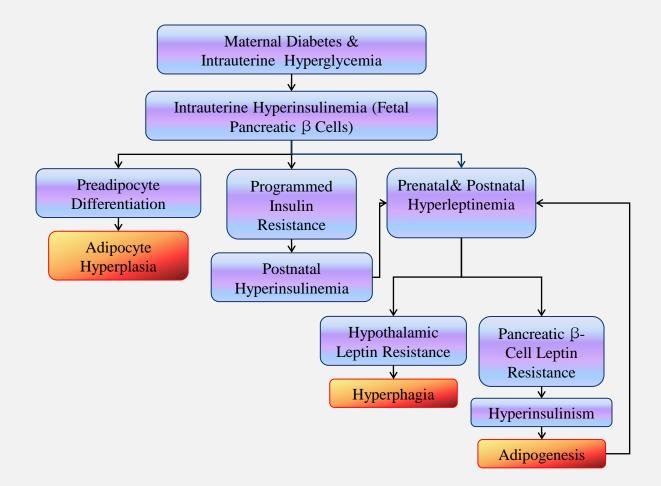
Results: Four of six included studies of prenatal exposure to maternal diabetes found higher prevalence of childhood overweight or obesity among offspring of diabetic methers, with the highest quality study reporting an odds ratio of adolescent overweight of 1.4 (95% CI 1.0–1.9). The Dutch famine study found that exposure to maternal malnutrition in early, but not late, gestation was associated with increased

Disclaimer: The opinions expressed in this paper are the authors' and do not necessarily reflect the views or policies of the institutions with which the authors are affiliated.

J. S. Huang · T. A. Lee · M. C. Lu Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, CA, USA

M. C. Lu (🖂)

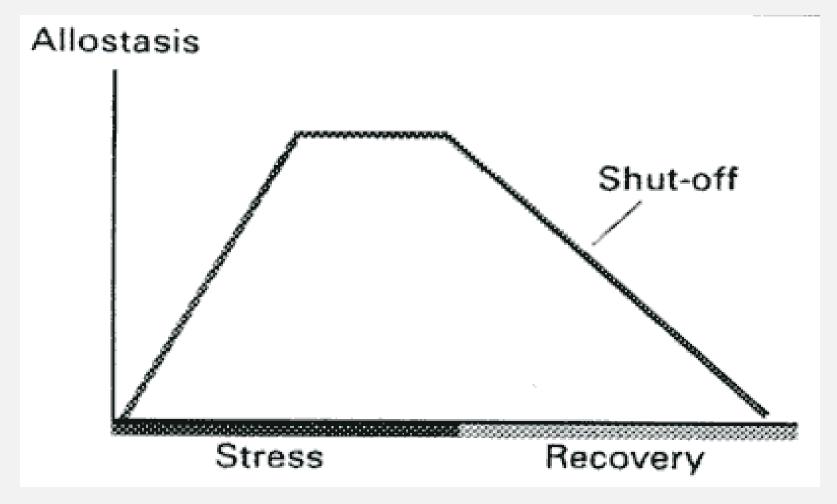
Department of Community Health Sciences and the Center for Healthier Children, Families and Communities, UCLA School of Public Health, Box 951772, Los Angeles, CA 90095–1772, USA e-mail: mcluwcla.edu odds of childhood obesity (OR 1.9, 95% CI 1.5–2.4). All eight included studies of prenatal exposure to maternal smoking showed significantly increased odds of childhood overweight and obesity, with most odds ratios clustering around 1.5 to 2.0. The biological mechanisms mediating these relationships are unknown but may be partially related to programming of insulin, leptin, and glucocorticoid resistance in utero.


Conclusion: Our review supports prenatal programming of childhood overweight and obesity. MCH research, practice, and policy need to consider the prenatal period a window of opportunity for obesity prevention.

Keywords Prenatal programming · Childhood obesity · Overweight · Developmental programming · Fetal programming · Gestational diabetes · Matemal malnutrition · Cigarette smoking

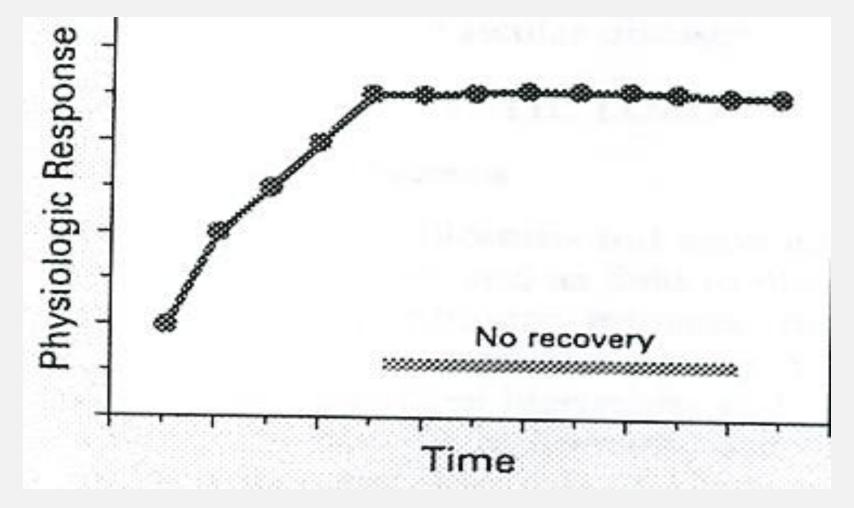
Childhood overweight and obesity is a growing problem in the United States and worldwide. The prevalence of childhood hood overweight in the U.S. tripled between 1980 and 2000 [1]. Today approximately 1 in 6 (16%) U.S. children are overweight with significant racial-ethnic disparities. For example, nearly 1 in 4 (23%) non-Hispanic black girls ages 6 to 19 are overweight, a prevalence almost twice that of non-Hispanic white girls [1].

Overweight and obesity has significant lifelong consequences on the health and well-being of children [2, 3]. Childhood obesity is associated with early-onset Type II diabetes mellitus, hypertension, metabolic syndrome, and sleep apnea. It is also associated with cognitive or intellectual impairment and social exclusion and stigmatization as parts of a vicious cycle including school avoidance [3]. Childhood obesity tracks strongly into adulthood [4, 5]; obesity beyond


### Prenatal Programming of Childhood Obesity

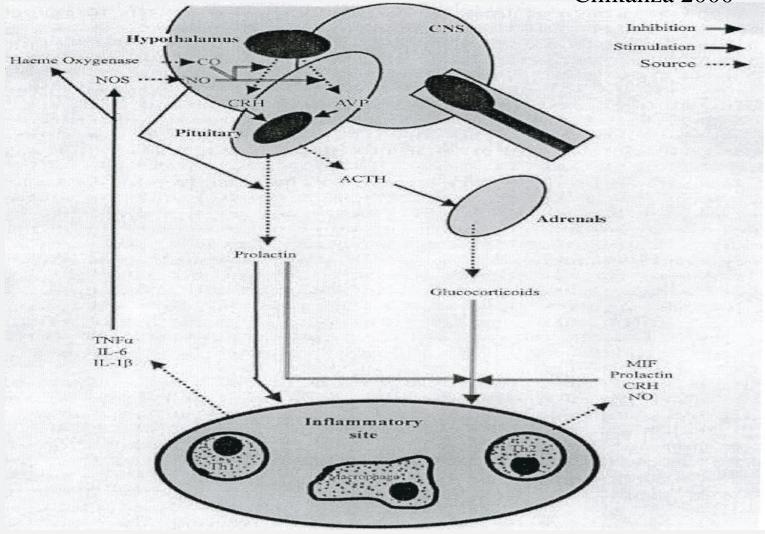


# **Cumulative Pathways**


Photo: http://www.lam.mus.ca.us/cats/encyclo/smilodon/

# **Allostasis:** Maintain Stability through Change




McEwen BS. Protective and damaging effects of stress mediators. N Eng J Med. 1998;338:171-9.

### Allostastic Load: Wear and Tear from Chronic Stress



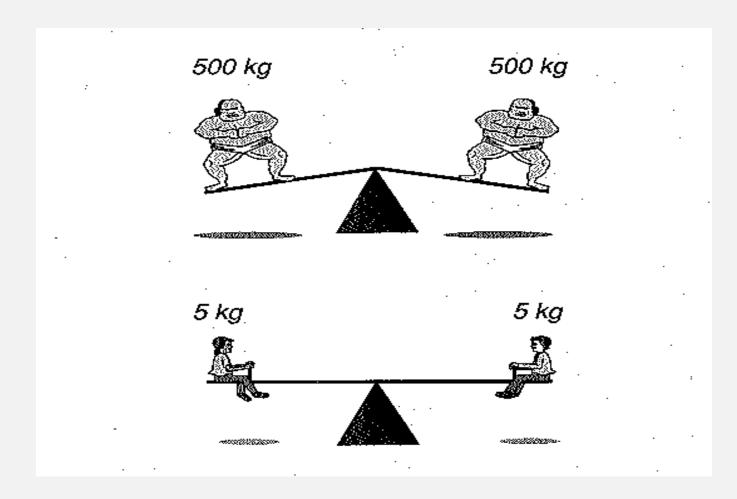
McEwen BS. Protective and damaging effects of stress mediators. N Eng J Med. 1998;338:171-9.





# **Stressed vs. Stressed Out**

#### Stressed

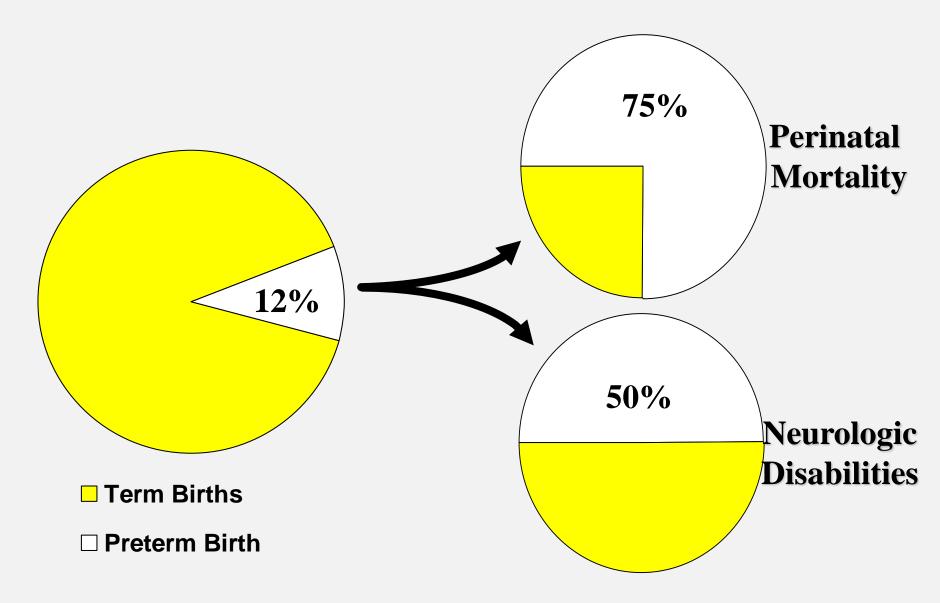

Increased cardiac output

- Increased available glucose
- Enhanced immune functions
- Growth of neurons in hippocampus & prefrontal cortex

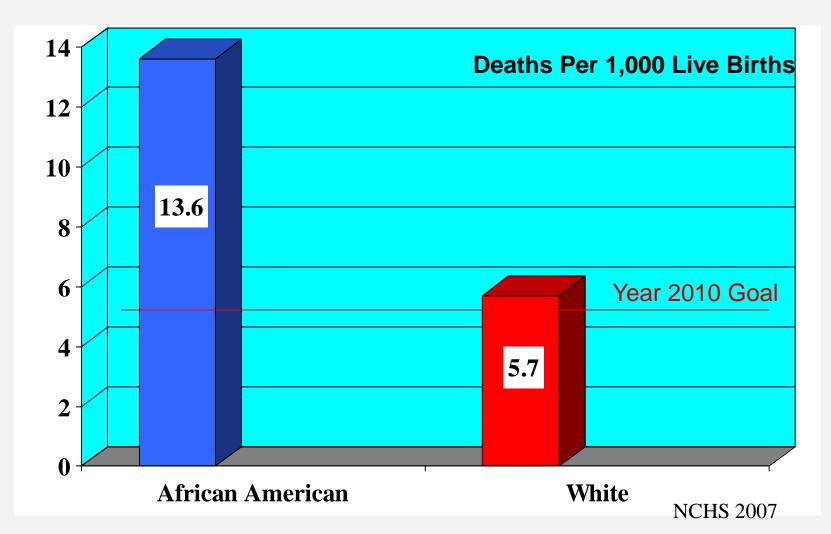
#### Stressed Out

- Hypertension & cardiovascular diseases
  - Glucose intolerance & insulin resistance
- Infection & inflammation
- Atrophy & death of neurons in hippocampus & prefrontal cortex

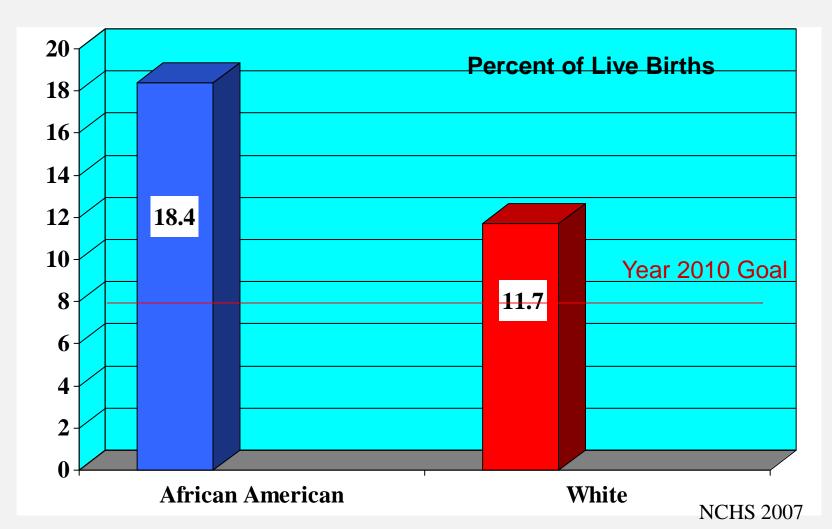
# **Allostasis & Allostatic Load**



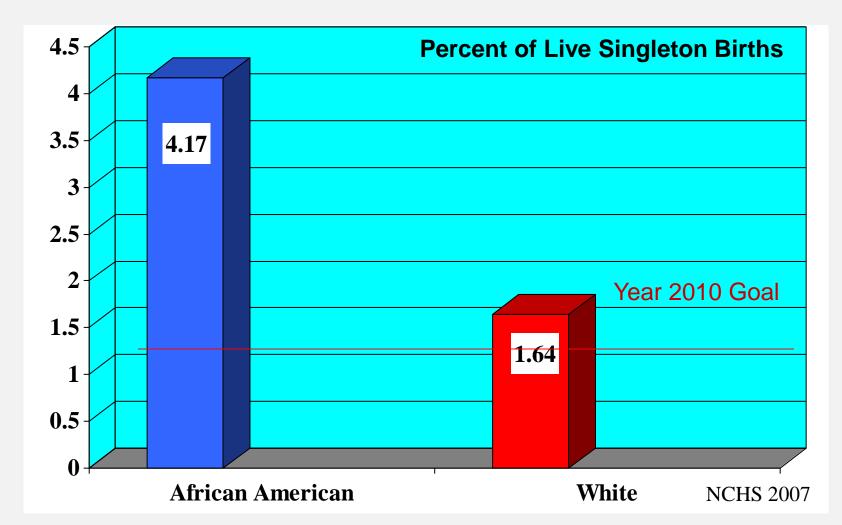

McEwen BS, Lasley EN. The end of stress: As we know it. Washington DC: John Henry Press. 2002


# **Rethinking Preterm Birth**




### Sequelae of Preterm Birth

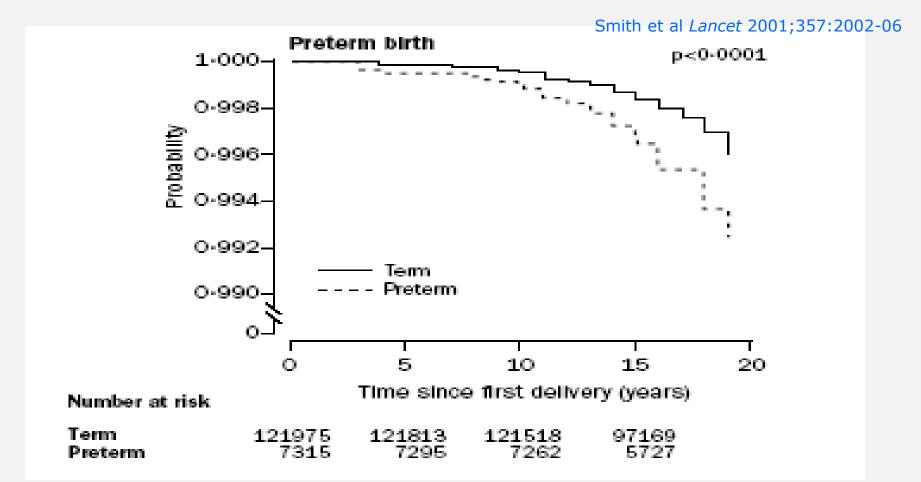



# Racial & Ethnic Disparities Infant Mortality



# **Racial & Ethnic Disparities Preterm Births < 37 Weeks**




# **Racial & Ethnic Disparities Very Preterm Births < 32 Weeks**



# **Rethinking Preterm Birth**

Vulnerability to preterm delivery may be traced to not only exposure to stress & infection during pregnancy, but host response to stress & infection (e.g. stress reactivity & inflammatory dysregulation) patterned over the life course (early programming & cumulative allostatic load)

# Preterm Birth & Maternal Ischemic Heart Disease



Kaplan-Meier plots of cumulative probability of survival without admission or death from ischemic heart disease after first pregnancy in relation to preterm birth

## Preterm Birth & Maternal Hypertension

Lu, et al. manuscript in preparation .9 Survival .8 .7 .6 5000 0 10000 Analysis time in days Black moderate Black pre-term Black term White pre-term White moderate White term

#### Preconception Health and Health Care: A Life-Course Perspective

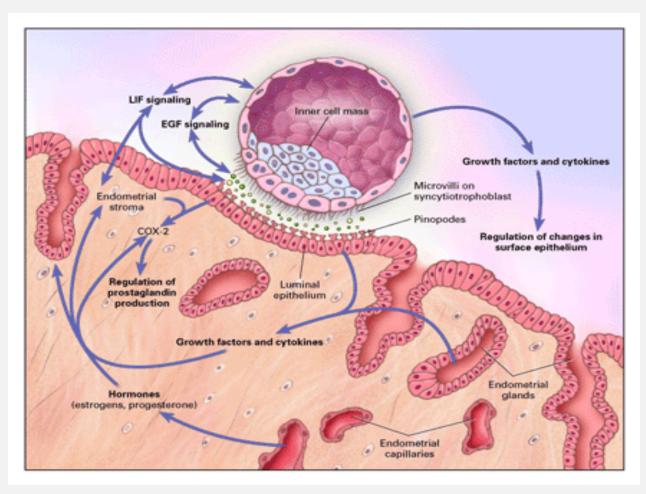
# Preconception is a critical period for children's health.

#### **Early Prenatal Care Is Too Late**

- □ To prevent some birth defects
- □ **To prevent implantation errors**
- □ To restore allostasis

# Preconception is a critical period for children's health

- □ Folic acid
- Rubella seronegativity
- Diabetes (preconception)
- Hypothyroidism
- □ HIV/AIDS
- □ Maternal phenylketonurea (PKU)
- Oral anticoagulant
- Antiepiletic drugs
- □ Isotretinoins (Accutane)
- □ Smoking
- □ Alcohol misuse
- □ Obesity
- Hepatitis B


Atrash HK, Johnson K, Adams MM, Cordero JF, Howse J. reconception Care for Improving Perinatal Outcomes: The Time to Act. Matern Child Health J. 2006 Jun 14.

### **Preconception Care for Men**

- □ tobacco
- alcohol
- drugs (e.g. anabolic steroids)
- **caffeine**
- poor diet
- radiation and chemotherapy
- testicular hyperthermia
- diabetes mellitus
- varicoceles
- epididymitis
- □ 1,2-dibromo-3-chloropropane
- nonylphenol
- **polycyclic aromatic hydrocarbons (PAHs)**
- polychlorinated biphenyls (PCBs)
- □ dioxins
- phthlates

Aitken RJ, Koonman P, Lewis SE. Seeds of concern. Nature. 2004 Nov 4;432(7013):48-52

#### Early Prenatal Care Is Too Late Implantation Errors



Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med. 2001 Nov 8;345(19):1400-8.

### The Role of the Placenta in Fetal Programming

Table 1. Associations between placental weight and the placental weight/birthweight ratio (placental ratio) and long term cardiovascular and metabolic outcomes

|                         | Association with later outcome                               | Reference                     |
|-------------------------|--------------------------------------------------------------|-------------------------------|
| Blood pressure          |                                                              |                               |
| Small placental weight  | ↑ adult blood pressure                                       | Campbell et al., 1996         |
| Small placental weight  | ↑ adult hypertension with diabetes                           | Eriksson et al., 2000         |
| Small placental volume* | ↑ childhood blood pressure                                   | Thame et al., 2000            |
| Large placental weight  | ↑ adult blood pressure                                       | Barker et al., 1990           |
| Large placental weight  | ↑ childhood blood pressure                                   | Law et al., 1991              |
| Large placental weight  | ↑ childhood blood pressure                                   | Moore et al., 1996            |
| Large placental weight  | ↑ childhood blood pressure (boys only)                       | Taylor et al., 1997           |
| High placental ratio    | ↑ adult blood pressure                                       | Barker et al., 1992           |
| High placental ratio    | ↑ adult blood pressure                                       | Moore et al., 1999            |
| High placental ratio    | ↑ adult hypertension without diabetes                        | Eriksson et al., 2000         |
| Placental weight/ratio  | <ul> <li>childhood blood pressure</li> </ul>                 | Whincup et al., 1995          |
| Placental weight/ratio  | <ul> <li>adult blood pressure</li> </ul>                     | Martyn et al., 1995b          |
| Coronary heart disease  |                                                              |                               |
| Small placental weight  | ↑ coronary heart disease (men)                               | Forsen et al., 1997           |
| Placental weight        | <ul> <li>coronary heart disease (men)</li> </ul>             | Martyn, Barker & Osmond, 1996 |
| Placental weight        | <ul> <li>coronary heart disease (men &amp; women)</li> </ul> | Leon et al., 1998             |
| Placental weight        | <ul> <li>coronary heart disease (women)</li> </ul>           | Forsen et al., 1999           |
| Placental weight        | <ul> <li>coronary heart disease (men)</li> </ul>             | Eriksson et al., 2001         |
| Low placental ratio     | ↑ coronary heart disease (men)                               | Martyn, Barker & Osmond, 1996 |
| High placental ratio    | ↑ coronary heart disease (men)                               | Martyn, Barker & Osmond, 1996 |
| High placental ratio    | ↑ coronary heart disease (women)                             | Forsen et al., 1999           |
| Stroke                  |                                                              |                               |
| Small placental weight  | ↑ stroke death rates                                         | Martyn, Barker & Osmond, 1996 |
| Glucose tolerance       |                                                              |                               |
| Small placental weight  | ↑ type-2 diabetes                                            | Forsen et al., 2000           |
| High placental ratio    | ↑ prevalence of impaired glucose tolerance                   | Phipps et al., 1993           |
| Plasma fibrinogen       |                                                              |                               |
| Small placental weight  | ↑ plasma fibrinogen                                          | Martyn et al., 1995a          |
| High placental ratio    | ↑ plasma fibrinogen                                          | Barker, Osmond & Meade, 1992  |

↑=association found in the direction shown; -=no significant association found. \*Measured in *mid-trimester*.

Godfrey KM. The role of the placenta in fetal programming-a review. Placenta. 2002;23 Suppl A:S20-7.

# Preconception care is no quick fix for women's health.

#### Where is the A in MCH?

www.cincinnatichildrens.org



#### It take more than preconception care to promote preconception health

- Sustainable development
- Human development
- Economic development
- Community development

Aday LA. (Editor). Reinventing Public Health: Policies and Practices for a Healthy Nation. San Francisco: Jossey-Bass 2005.

#### Preconception care is no silver bullet for disparities in birth outcomes.

#### Closing the Black-White Gap in Birth Outcomes: A 12-Point Plan

- **1.** Provide interconception care to women with prior adverse pregnancy outcomes
- 2. Increase access to preconception care for African American women
- 3. Improve the quality of prenatal care
- 4. Expand healthcare access over the life course
- 5. Strengthen father involvement in African American families
- 6. Enhance service coordination and systems integration
- 7. Create reproductive social capital in African American communities
- 8. Invest in community building and urban renewal
- 9. Close the education gap
- **10. Reduce poverty among Black families**
- **11. Support working mothers and families**
- **12. Undo racism**

Lu MC, Kotelchuck M, Hogan V, Jones L, Jones C, Halfon N. Closing the Black-White gap in birth outcomes: A life-course approach. Ethnicity and Disease *Forthcoming in* 2008.

All this will not be finished in the first 100 days. Nor will it be finished in the first 1,000 days, nor in the life of this Administration, nor even perhaps in our lifetime on this planet. But let us begin.

John F Kennedy (1961)



