
Newborn Screening for SCID: clinical impact

Presented to the Advisory Committee on Heritable Disorders in Newborns and Children November 9, 2017

Lisa Kobrynski, MD, MPH Marcus Professor of Immunology Emory University School of Medicine

Early Diagnosis = Better outcomes

Key publication by Pai, et al. using data from the Primary Immune deficiency treatment consortium showed a marked improvement in survival for transplants done at <3.5 months of age.</p>

Diagnosis + treatment \leq 3.5 mos = 94% survival at 5 years

Pai SY NEJM 2014

What we learned: first 11 states screening

- Data from 11 programs (10 states + Navajo nation) screened over 3 million infants:
 - Identified 52 cases of SCID population incidence of 1:58,000
 - Survival was 45/52 infants overall and in 45/49 who received a hematopoietic cell transplant (92%)
 - Non-SCID T-cell lymphopenia occurred in 1:14,000 infants
 - Causes of non-SCID TCL: DGS/22q11 DS (n=78), trisomy 21 (n=21), Ataxia-telangiectasia (n=4), Trisomy 18 (n=4), CHARGE (n=3), Jacobsen (n=2), assorted others single cases
- Paper was critical in identifying the population birth prevalence of SCID, which was nearly double the previous estimates of 1:100,000

More States data

- Wisconsin data 2008-2011: 5 cases (207,696 births) or ~ 1:41,000 births
 - ► In addition 4 patients with 22q11 DS, 5 with Idiopathic TCL, 10 with other syndromes
 - 4/5 SCID patients had been transplanted at the time of publication. 1 was on PEG-ADA replacement, all were alive
- New York data 2010-2012: 9 cases (485,912 births) or ~ 1:54,000
 - ► In addition 19 cases with idiopathic TCL, 28 with other syndromes
 - ► 8/9 with HCT, one on PEG-ADA, all were alive
- California data 2010-2016: 26 cases from CA and 6 from other states
 - ► 94% were alive
 - Transplant outcomes: all with T cell reconstitution, 50% with B cell reconstitution
 - Types of SCID: IL2RG (7),ADA (6), DCLERC1 (5), II7R (4), RAG1 (4), RAG2 (4), JAK3 (1), RMRP (1)
 - Non SCID TCL mostly DiGeorge syndrome, also Ataxia-telangiectasia, CHARGE
 - 1 patient died prior to transplant

Verbsky J Jo Clin Immun 2012, Vogel B Jo Clin Imm 2014, Dorsey M JACI 2017

Georgia experience

- Screening started June 2016
- 3 cases of SCID identified for 129,700 births or ~ 1:43, 200 births
- 1 IL7RA, 1 PNP, 1 unknown
- 3/3 have been transplanted. All are alive
- 1 Idiopathic TCL, 2 CHARGE syndrome, 3 22q11 DS, 1 absent thymus, several other genetic/syndromic defects

Impact of SCID NBS

- Early presymptomatic identification is happening in 46/50 states with most infants being seen by a specialist within weeks of identification through NBS
- Several recent papers highlighted the cost savings for early identification and intervention for infants with SCID

Outcome	Screening	No Screening
Total cost screening + diagnosis	\$741,376	N/A
Treatment costs for surviving infants	\$197,258	\$457,401
Treatment costs for infants dying PT transplant	\$27,234	\$83,996
Treatment cost reduction w/ screening	\$316,905	N/A
Net direct cost w/ screening	\$424,470	N/A
Cost per life-yr-saved	\$35,311	
Benefit-cost ratio	2.7-5.3*	

* Ratio varies depending on the healthcare costs from Ding J Peds 2016

Conclusions

- As implied in the Kwan paper, SCID is more common that previously appreciated
- As expected, outcomes for infants with SCID identified at birth are better with less infectious complications and hospitalizations prior to transplant and to-date better outcomes post-transplant
- Another impact has been the focus on gathering data on the outcome of treatments for SCID with an emphasis on improving treatment outcomes through multicenter prospective trials
- BUT barriers remain
 - Access to specialists and treatment for infants in underserved areas (developing referral networks)
 - Cost issues for diagnostic testing and treatment at institutions specializing in primary immune deficiencies
 - Creation of central repositories for data on NBS for SCID epidemiology, pre transplant treatment and transplant outcomes, and long-term outcomes
 - Efforts by the Association of Public Health Laboratories, New Born Screening and Translational Research Network and Next Steps have been important

Thank you

?