Overview of Newborn Screening for Guanidinoacetate Methyltransferase (GAMT) Deficiency

February 10, 2022

ERG Members

Name	Affiliation / Role
Alex R. Kemper, MD, MPH, MS	Nationwide Children's Hospital
Tiasha Letostak, PhD, MPH	Nationwide Children's Hospital
Margie Ream, MD, PhD	Nationwide Children's Hospital
Roshani Tasker, MS	Nationwide Children's Hospital
Jelili Ojodu, MPH	APHL
Elizabeth Jones, MPH	APHL
K.K. Lam, PhD	Duke University
Sydney Sullivan, MPH	Duke University
Lisa Prosser, PhD	University of Michigan
Angela Rose, MS, MPH	University of Michigan
Scott Grosse, PhD	CDC
Joseph Bocchini, Jr., MD	Member
Jeffrey Botkin, MD, MPH	Member
Anne Comeau, PhD	Member
Susan Tanksley, PhD	Member
Jane DeLuca, PhD, RN, CPNP	Committee Liaison
Shawn McCandless, MD	Committee Liaison

Technical Expert Panel Members

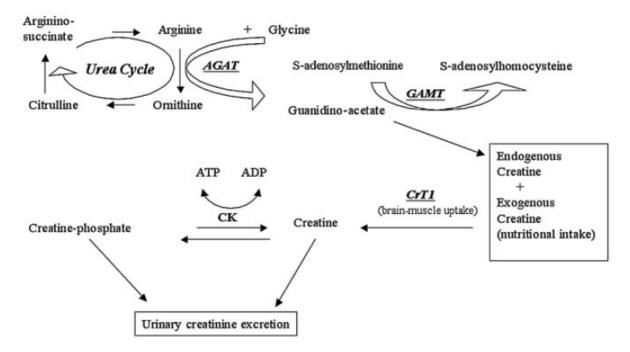
Name	Affiliation	Role
Saadat Andrews, MD	University of Alberta	Geneticist
Michele Caggana, ScD, FACMG	NY Newborn Screening Program	Director
Kim Hart, MS, LCGC	Utah Newborn Screening Program	Program Manager
Nicola Longo, MD, PhD*	University of Utah	Clinician Scientist
Marzia Pasquali, PhD*	University of Utah	Researcher
Andreas Schulze, MD, PhD	Hospital for Sick Children (SickKids)	Clinician Scientist
Jon Daniel Sharer, MD, PhD	University of Alabama Birmingham	Researcher, Director- Biochemical Genetics
Graham Sinclair, PhD, FCCMG	British Columbia Children's Hospital	Researcher, Biochemical Geneticist
Heidi Wallis*	Association for Creatine Deficiencies	President, Parent Advocate

*Also a nominator of GAMT deficiency to the RUSP

Overview

GAMT Deficiency

- Condition that causes cerebral creatine deficiency
- Untreated, global developmental delay with severe language delay, seizures, muscle weakness, movement disorders, behavior disorders



GAMT Deficiency

- Autosomal recessive mutation in the GAMT gene
- Location: 19.p13, 6 exons, at least 58 mutations
- Elevated guanidinoacetate (GUAC) and low plasma and brain creatine

Metabolic Pathway

Bianchi et al. Treatment monitoring of brain creatine deficiency syndromes: A 1H- and 31P-MR spectroscopy study. *Am J Neuroradiol*. 2007; 28:548-554

GAMT Deficiency

- Pathophysiology
 - Low creatine leads to intellectual disability
 - GUAC accumulation leads to epilepsy and extrapyramidal disorders
- Biomarkers
 - Creatine and GUAC
 - MR Spectroscopy

Epidemiology

- Estimated prevalence: <0.2/100,000 live births
- Wide range of estimated carrier frequency (1:812-1:1475)

References: Desroches et al. *Mol Genet Genomics*. 2015;290:2163-2171; Mercimek-Mahmutoglu S. *Mol Genet Metab*. 2012; 107:433-437

Clinical Identification

- Wide range of clinical identification
 - One study: mean age 12.3 years (range: 2-29 years)
 - A retrospective study in France evaluated 6,353 subjects with unexplained neurological symptoms and found 7 cases
 - Most (6/7) had signs before 2 years of age
 - Only one diagnosed before 2 years; 3 after 10 years

References: Mercimek-Mahmutogulu S. *Neurology*. 2006; 67:480-484. Cheillan et al. Screening for primary creatine deficiencies in French patients with unexplained neurological symptoms. *Orphanet Journal of Rare Disease*. 2012;7:96.

Newborn Screening

Screening and Diagnosis in Infancy

- MS/MS for GUAC and creatine
- Diagnosis:
 - Low creatine and elevated GUAC in plasma at least one week after birth
 - Rule-out arginase deficiency, which can cause elevated GUAC
 - Molecular analysis is supportive

Hart et al. Prospective identification by neonatal screening of patients with guanidinoacetate methyltransferase deficiency. *Mol Genet Metab*. 2021;134:60-64.

Newborn Screening in the US

New York

- Screening for GAMT deficiency began in October 2018
- Laboratory-developed test
- Initially a two-tiered screening test
 - GUAC and Creatine by FIA-MS/MS
 - GUAC by HPLC-MS/MS
- Second-tier discontinued in September 2021
- GAMT sequencing is part of the referral process

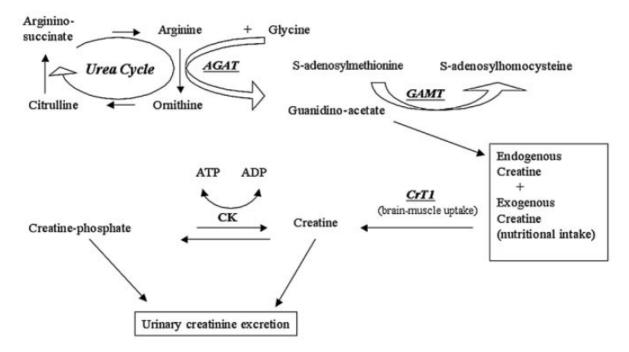
New York

- In 2021
 - 211,242 newborns screened
 - 78 borderline (37 per 100,000)
 - 6 referred (3 per 100,000)
 - 1 case identified (positive predictive value 17%; 0.47 cases per 100,000)
 - 3 false positives and 2 likely false positives (infants in the NICU that died prior to diagnostic testing)

Utah

- Two screens per infant
- Screening for GAMT deficiency began in June 2015
- Laboratory-developed test
- 2015-2019
 - First-tier: GUAC and creatine, FIA-MS/MS derivatized assay
 - Second-tier: GUAC and creatine, LC-MS-MS
- 2019-Present
 - First-tier: GUAC and creatine, FIA-MS/MS (non-derivatized)
 - Second-Tier: GUAC and creatine (send-out)

Utah


- Since adoption of the current approach in 2019, 78,477 screens
 - 1 second-tier test (1.3 per 100,000 screens)
 - 1 referral (1.3 per 100,000 screens)
 - 1 case identified (1.3 per 100,000 screens)

Treatment

Metabolic Pathway

Bianchi et al. Treatment monitoring of brain creatine deficiency syndromes: A 1H- and 31P-MR spectroscopy study. *Am J Neuroradiol*. 2007; 28:548-554.

Treatment

- Creatine and ornithine supplements, sodium benzoate, available over-the-counter
- Dietary restriction of arginine
- Ideal timing of treatment is uncertain, but experts recommend from 2-4 weeks of age
- Serum monitoring

Effectiveness of Early Treatment

- Given the rarity of the condition, clinical trials and cohort studies are challenging
- Focus on case reports and case series

- Case series of 48 subjects from 38 families from a survey of clinicians
- Median age of diagnosis: 51 months (range: prenatal-34 years), with treatment soon after diagnosis
- Increasing age at treatment start was associated with greater severity of intellectual disability
- 3 subjects treated before 1 month: no developmental delay after a treatment duration of 14 months-7 years

Stockler-Ipsiroglu S et al. Guanidinoacetate methyltransferase (GAMT) deficiency: outcomes in 48 individuals and recommendations for diagnosis, treatment, and monitoring. *Mol Gen Metab*. 2014;111:16-25.

- Case report: subject who began treatment at 28 months followed to 6 years with persistent intellectual disability
- Case Report: subject diagnosed and treated at 8 days based on family history with normal development at 12 months

References: Mercimek-Mahmutoglu et al. *Pediatric Neurology*. 2014;51:133-137. Viau KS. Evidence-based treatment of guanidinoacetate methyltransferase (GAMT) deficiency. *Genet Metab*. 2013;110:255-262.

• Sibling Case:

 Older sibling treated at 10 months after presenting with hypotonia; at 6 years still delayed speech and fine motor skills

Younger sibling diagnosed prenatally normal at 42 months

Reference: El-Gharbawy et al. Elevation of guanidinoacetate in newborn dried blood spots and impact of early treatment in GAMT deficiency. *Mol Genet Metab*. 2013;109:215-217.

- Sibling Case
 - Older sibling diagnosed at 2 years of age with significant developmental delay and seizures
 - Younger sibling began treatment at 22 days and developmentally normal at 14 months

Reference: Schulze A. et al. Presymptomatic treatment of neonatal guanidinoacetate methyltransferase deficiency. *Neurology* 2006;67:719-721.

- Cousins reported in an abstract
 - Older cousin began treatment ~3 years, but after an unclear period of treatment, still had significant intellectual impairment but improved seizure frequency
 - Younger cousin evaluated at 5 months, with normal development at 16 months

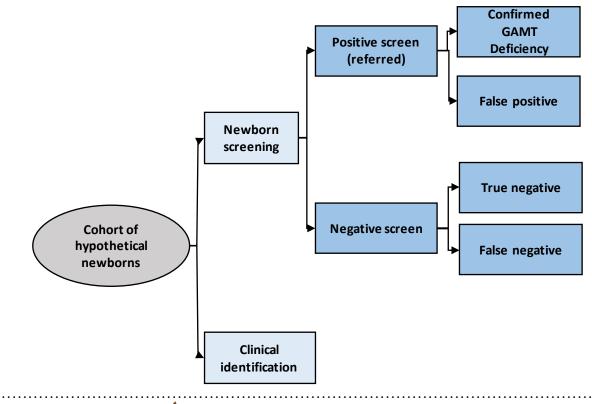
Farshidi S et al. Creatine deficiency syndrome: a case report. Annual symposium of the Society for the Study of Inborn Errors of Metabolism, 2011.

Evidence Review Process Currently Underway

Projection of Population-Level Outcomes

Goal

 Compare projected outcomes from GAMT deficiency newborn screening for all newborns in the US with usual case detection in the absence of screening.


Projected Population-Level Outcomes M

- Annual US newborn cohort of 3.6 million
- Newborn screening
 - Screening outcomes
 - Cases of GAMT deficiency
- Clinical identification
 - Confirmed cases of GAMT deficiency

Model Schematic

Public Health System Impact Survey

Public Health System Impact Survey

- Webinar held on January 14
- Survey to open next week

Questions?

