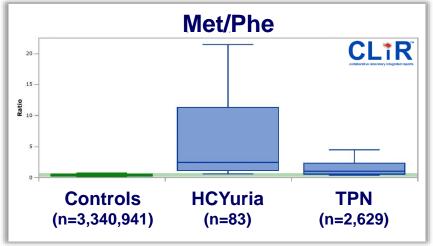
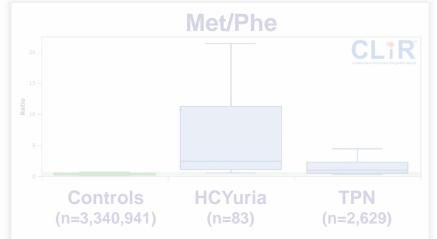
Homocystinuria's Newborn Screening Problem - Possible and Available Solutions -


Dietrich Matern, MD, PhD, FACMG Professor of Laboratory Medicine, Medical Genetics, and Pediatrics Biochemical Genetics Laboratory matern@mayo.edu

*total parenteral nutrition


Proposed solutions:

- Methionine + Met/Phe ratio:
 - Easy to measure and calculate
 - Not sensitive, even with low cutoff

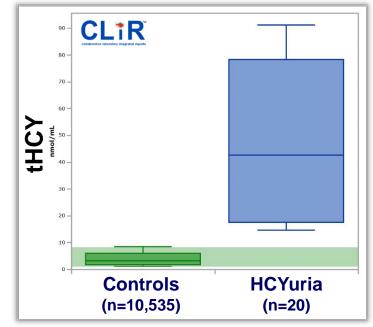
Proposed solutions:

- Methionine + Met/Phe ratio:
 - Easy to measure and calculate
 - Not sensitive, even with low cutoff
- Molecular genetics of CBS gene:

974 CBS variants in ClinVar (www.ncbi.nlm.nih.gov/clinvar; 5/8/2022):

Pathogenic (n=165)Benign (n=95)	260 variants (27%) of known significance		
– Likely pathogenic (n=	714 variants (73%)		
likely benign (n=328), conflicting interpretations (n=50)			of ??? significance

Proposed solutions:


- total homocysteine, primary screen:
 - Sensitive
 - Specific (esp. when combined with MMA)

Clinical Chemistry 67:12 1709-1720 (2021)

General Clinical Chemistry

Combining First and Second-Tier Newborn Screening in a Single Assay Using High-Throughput Chip-Based Capillary Electrophoresis Coupled to High-Resolution Mass Spectrometry

C. Austin Pickens, Samantha L. Isenberg, Carla Cuthbert, and Konstantinos Petritis 💿 *

Currently <u>available</u> solution:

- total homocysteine, 2nd tier test:
 - Sensitive
 - Requires LC-MS/MS
 - Regionalization is an option (Homocystinuria not a time critical condition)
 - Can be multiplexed with other markers

Clinical Chemistry 56:11 1686–1695 (2010) Endocrinology and Metabolism

Determination of Total Homocysteine, Methylmalonic Acid, and 2-Methylcitric Acid in Dried Blood Spots by Tandem Mass Spectrometry

Coleman T. Turgeon, ¹ Mark J. Magera, ¹ Carla D. Cuthbert, ² Perry R. Loken, ¹ Dimitar K. Gavrilov, ¹ Silvia Tortorelli, ¹ Kimiyo M. Raymond, ¹ Devin Oglesbee, ¹ Piero Rinaldo, ¹ and Dietrich Matern^{1*}

Pajares et al. Orphanet J Rare Dis (2021) 16:195 https://doi.org/10.1186/s13023-021-01784-7 Orphanet Journal of Rare Diseases

RESEARCH

Open Access

Implementation of second-tier tests in newborn screening for the detection of vitamin B₁₂ related acquired and genetic disorders: results on 258,637 newborns

Sonia Pajares^{1,2}, Jose Antonio Arranz³, Aida Ormazabal^{2,4}, Mireia Del Toro³, Ángeles García-Cazorla^{2,4}, Aleix Navarro-Sastre¹, Rosa María López^{1,5}, Silvia María Meavilla⁴, Mariela Mercedes de los Santos⁴, Camila García-Volpe⁴, Jose Manuel González de Aledo-Castillo¹, Ana Argudo¹, Jose Luís Marín¹, Clara Carnicer³, Rafael Artuch^{2,4}, Frederic Tort^{1,2,5}, Laura Gort^{1,2,5}, Rosa Fernández⁶, Judit García-Villoria^{1,2,5†} and Antonia Ribes^{1,2,5†}

Currently <u>available</u> solution:

- 2nd tier test: total homocysteine, methylmalonic acid, and I Inherit Metah Dis (2011) 34:137-145 methylcitric acid DOI 10 1007/s10545-010-9120-8 HOMOCYSTEINE AND B-VITAMIN METABOLISM
- Used when:
 - C₃-acylcarnitine elevated -
 - Methionine elevated
 - Methionine reduced (!!!) -

= ca. 1-2% of newborns

Isolated remethylation disorders: do our treatments benefit patients?

Manuel Schiff • Jean-Francois Benoist • Bogdana Tilea • Nicolas Rover · Stéphane Giraudier · Hélène Ogier de Baulny

Received: 15 February 2010/Revised: 17 April 2010/Accepted: 20 April 2010/Published online: 21 May 2010 © SSIEM and Springer 2010

Concluding remarks and future prospects

One of the most important (and challenging) requirements for improving the outcome of isolated remethylation disorders is early recognition followed by aggressive treatment....

ioral deterioration. A few patients may have signs of ities are easily corrected.

Currently available solution:

2nd tier test: total homocysteine, methylmalonic acid, and methylcitric acid

MDPI

International Journal of Neonatal Screening

Article

The Combined Impact of CLIR Post-Analytical Tools and Second Tier Testing on the Performance of Newborn Screening for Disorders of Propionate, Methionine, and Cobalamin Metabolism

Dimitar K. Gavrilov *, Amy L. Piazza, Gisele Pino[®], Coleman Turgeon, Dietrich Matern[®], Devin Oglesbee⁽⁰⁾, Kimiyo Raymond, Silvia Tortorelli and Piero Rinaldo

Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Piazza.Amy@mayo.edu (A.L.P.); Pino.gisele@mayo.edu (G.P.); Turgeon.Coleman@mayo.edu (C.T.); Matern@mayo.edu (D.M.); Oglesbee.Devin@mayo.edu (D.O.); Raymond.Kimiyo@mayo.edu (K.R.); Tortorelli.Silvia@mayo.edu (S.T.); Rinaldo@mayo.edu (P.R.) * Correspondence: Gavrilov.dimitar@mayo.edu

Received: 25 February 2020; Accepted: 7 April 2020; Published: 10 April 2020

Table 1. Markers of inherited and acquired disorders of propionate, cobalamin, and methionine metabolism, count of cases, and Collaborative Laboratory Integrated Reports (CLIR), tools.

Disorder	Compl. Group OM	OMIM#	OMIM# Gene	1st Tier Markers		CLIR		2nd Tier Markers		
		OMIN #		C3	Met	* No. Cases	MS/MS Tool	Hcy	MMA	MCA
Propionic acidemia	n/a	606054	PCA, PCB			136	PROP	N	N	High
Isolated Methylmalonic acidemia	mut ⁰ mut ⁻	251000	MCM		Ν	192	MUT/CbI AB	N	High	High
	Cbl A	251100	MMAA		192	Menterino				
	Cbl B	251100	MMAB							
Methylmalonic acidemia and Homocystinuria	Cbl C	277400	MMACHC		High Low	139	Cbl CD	– High –	High	N to High
	Cbl D	277410	MMACHC							
	Cbl F	277380	LMBRD1	High		3	Cbl F			
	Cbl J	614857	ABCD4			-	-			
	Cbl X	309541	HCFC1			-	-			
Intrinsic factor deficiency		261000	GIF		N	-	-	- High		N to High
Megaloblastic anemia-1		261100	CUBN, AMN	-		-	-			
Transcobalamin II deficiency	n/a	275350	TCN2			-	-		High	
Transcobalamin receptor defect		613646	CD320			11	TCbIR			
Maternal Vitamin B12 deficiency		-	-		Low	138	B12 (mat)			
Homocystinuria (CBS deficiency)	n/a	236200	CBS		High	74	HCY			
Homocystinuria and megaloblastic anemia	Cbl G	250940	MTR			11	RMD	High	Ν	Ν
	Сы Е	236270	MTRR		Low					
MTHFR deficiency		236250	MTHFR	N						
Methionine adenosyltransferase def.		250850	MAT 1A							
Adenosine kinase deficiency	n/a 180960	180960	ADK		High	112	H-MET	N	Ν	N
Glycine N-methyltransferase def.		GNMT		0						
S-adenosylhomocysteine hydrolase def.		613752	AHCY							
FP C3		n/a	n/a	High	N	124	FP C3	N	N	N
TPN		n/a	n/a	N	High	2816	TPN	N	N	N

* Count of CLIR cases as of January 31, 2020. Abbreviations as follows: C3, propionylcarnitine; Cbl, cobalamin; CBS, cystathione β-synthase; CLIR, Collaborative Laboratory Integrated Reports (see text); FP, false positive; Hcy, total homocysteine; High, elevated concentration in dried blood spots in >50% of cases; Low, reduced concentration in dried blood spots in >50% of cases; Met, methionine; MCA, 2-methylcitric acid; MMA, methylmalonic acid; mut, mutase; MTHFR, (N)5,10-methylenetetrahydrofolate reductase; n/a, not applicable; N, normal concentration in dried blood spots; N to High, inconsistent elevation in <50% of cases; RMD, remethylation disorders, OMIM #-Online Mendelian Inheritance in Man symbol indicating a descriptive entry, usually phenotype

Currently available solution:

2nd tier test: total homocysteine, methylmalonic acid, and

MDPI

check for updates

methylcitric acid

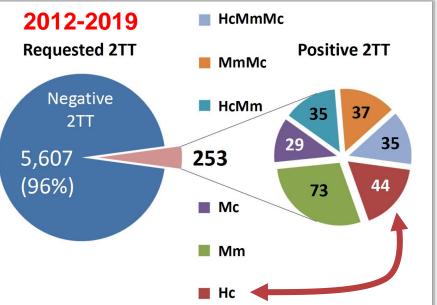
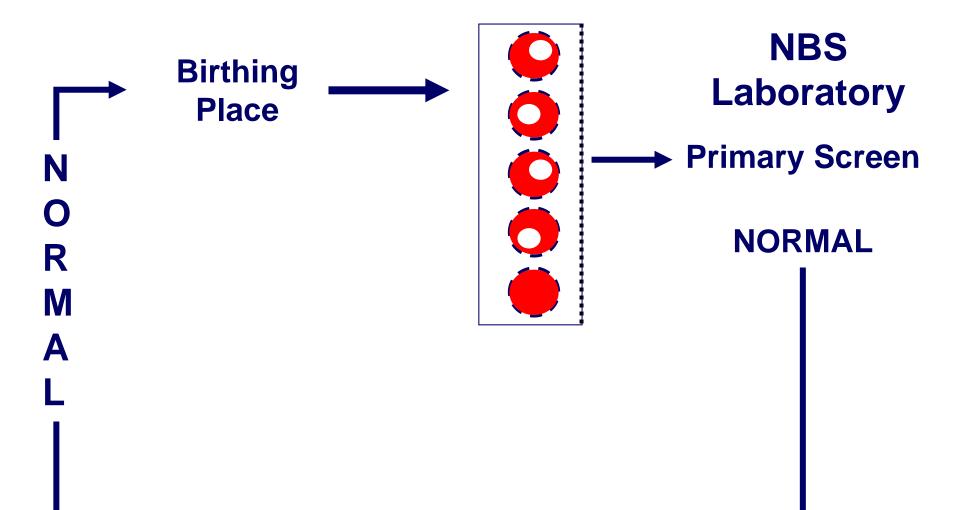
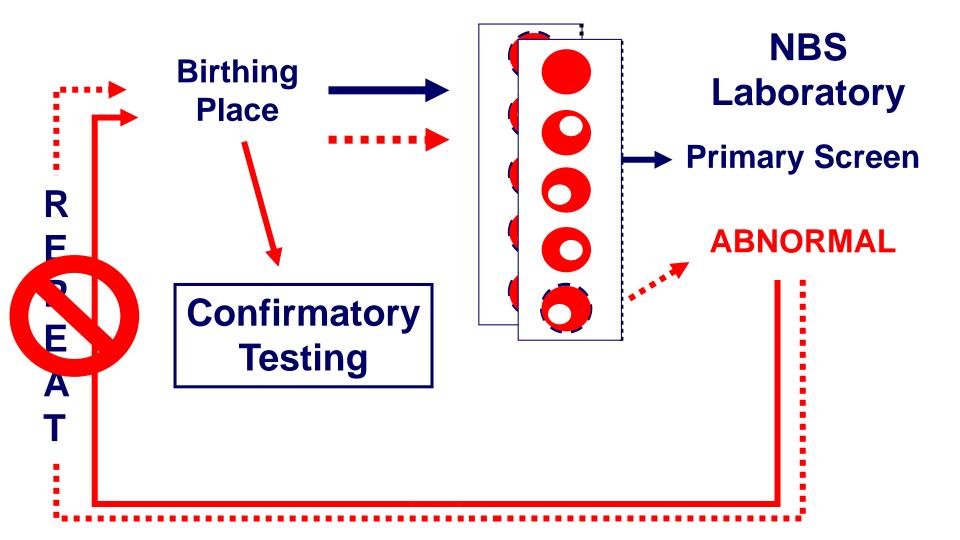
International Journal of Neonatal Screening

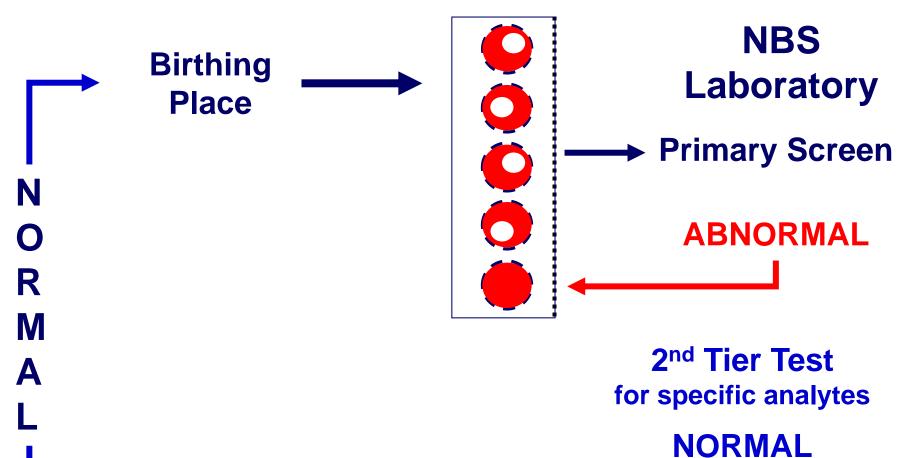
Article The Combined Impact of CLIR Post-Analytical Tools and Second Tier Testing on the Performance of Newborn Screening for Disorders of Propionate, Methionine, and Cobalamin Metabolism

Dimitar K. Gavrilov *, Amy L. Piazza, Gisele Pino[®], Coleman Turgeon, Dietrich Matern[®], Devin Oglesbee⁽⁰⁾, Kimiyo Raymond, Silvia Tortorelli and Piero Rinaldo

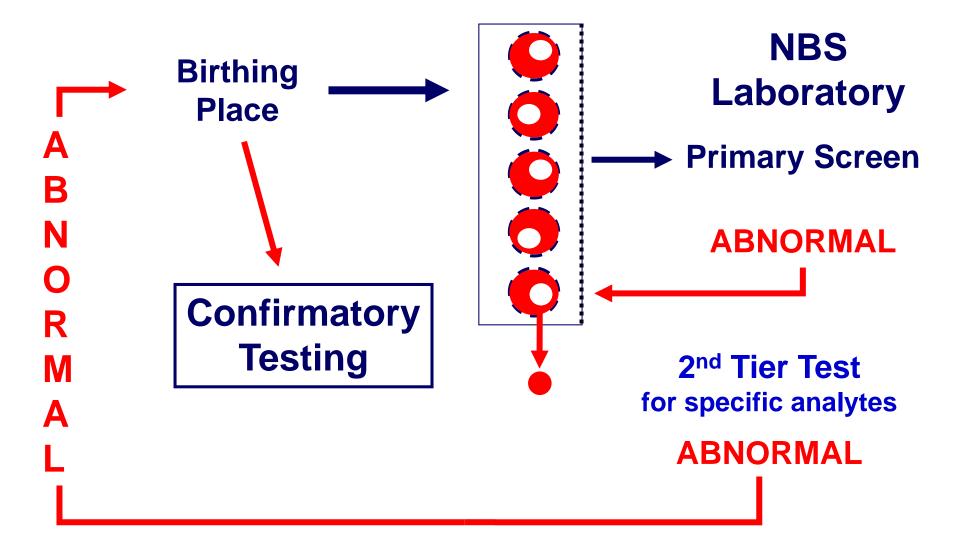
Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Piazza.Amy@mayo.edu (A.L.P.); Pino.gisele@mayo.edu (G.P.); Turgeon.Coleman@mayo.edu (C.T.); Matern@mayo.edu (D.M.); Oglesbee.Devin@mayo.edu (D.O.); Raymond.Kimiyo@mayo.edu (K.R.); Tortorelli.Silvia@mayo.edu (S.T.); Rinaldo@mayo.edu (P.R.) * Correspondence: Gavrilov.dimitar@mayo.edu

Received: 25 February 2020; Accepted: 7 April 2020; Published: 10 April 2020


Figure 3. Distribution of cases with an abnormal 2TT. Hc, isolated elevation of tHcy; Mc, isolated elevation of MCA; other abbreviations are as in the legend of Figure 2.

What are 2nd Tier Tests?


- A cost-effective approach to reduce false positive results when normal population and disease range overlap (poor specificity)
- After primary screen (based on CLIR score or cutoff)
- Same specimen, <u>no</u> additional patient contact
- Normal 2nd tier test result overrules primary screen
 - ➔ reduction of false positive results
- Examples: biochemical (e.g. CAH), molecular (e.g. CF)

NORIVIA (>90%)

Improvement of NBS for C_3 & Met (4/2005 – 12/2011: 502,978 newborns in MN)

	without 2 nd Tier	with 2 nd Tier
False Positive	10,900	31
False Positive Rate	2.17%	0.006%
F/U-Cost	\$9,384,900	\$26,691
Cost (2 nd Tier Test)	\$0	\$370,600
Total F/U-Cost	\$9,384,900	\$397,291
Difference/Savings	\$8,987,609	9 (96%)
Cost fo	sts (physician, clinic, lab)* or 2 nd Tier Test* ated in 2012 based on ACMG algorit	\$861/Patient \$34/Test thm at the time

Improvement of NBS for C ₃ & Met US Annual Births: ca. 4 Million					
	without 2 nd Tier	with 2 nd Tier			
False Positive	86,800	240			
False Positive Rate	2.17%	0.006%			
F/U-Cost	\$74,734,800	\$206,640			
	*•	\$0.054.000			

Cost (2nd Tier Test)\$0\$2,951,200Total F/U-Cost\$74,734,800\$3,157,840

Difference/Savings \$71,576,960 (96%)

F/U Costs (physician, clinic, lab)*\$861/PatientCost for 2nd Tier Test*\$34/Test*calculated in 2012 based on ACMG algorithm at the time

- Newborn screening for Homocystinuria is currently hampered by a marker (Methionine) with poor sensitivity and specificity.
- There is a solution (2nd tier tHCY) that is efficient, effective and accessible if identification of most cases with Homocystinuria was really desired.
- tHCY may be added to new primary screening assays in the future (Petritis K/CDC et al.).
- Reduction of unnecessary health care spending is possible if NBS was truly a "system" and not compartmentalized.

Acknowledgments

MAYO CLINIC

Dimitar Gavrilov, MD, PhD Tricia Hall, PhD Devin Oglesbee, PhD Kimiyo Raymond, MD (Emer) Piero Rinaldo, MD, PhD (Emer) Matt Schultz, PhD Silvia Tortorelli, MD, PhD Gessi Bentz Pino, CGC Dawn Peck, CGC April Studinski, CGC Amy White, CGC