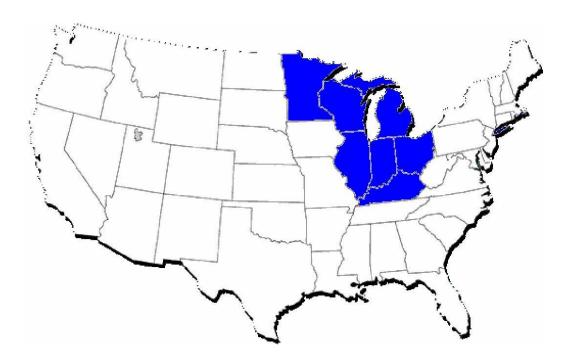
Regional Genetic Service & Newborn Screening Collaboratives


Region 4 Update

Performance Metrics and Harmonization of Cutoff Values for Newborn Screening by Tandem Mass Spectrometry (MS/MS)

7th Meeting of the Secretary's Advisory Committee on Heritable Disorders and Genetic Diseases in Newborns and Children (ACHDGDNC)

February 13th, 2006

A Regional Approach to Improve the Health of Children and Families with Heritable Disorders in Illinois, Indiana, Kentucky, Michigan, Minnesota, Ohio, and Wisconsin (Region 4)

Goals of Regional Collaborative

- Implement universal screening and confirmatory testing of newborns for inborn errors of amino acid, organic acid, and fatty acid metabolism
- Reduce inequities in access to genetic services
- Utilize a regional approach to improve public health infrastructure for supporting optimal diagnosis, follow up and management of children with heritable disorders and birth defects

Objectives of Project 1

- Achieve uniformity of testing panel by MS/MS to maximize detection of affected newborns within the region
- Improve overall analytical performance
- Set and sustain lowest achievable rates of false positive results

HRSA/ACMG Uniform Panel (MS/MS)

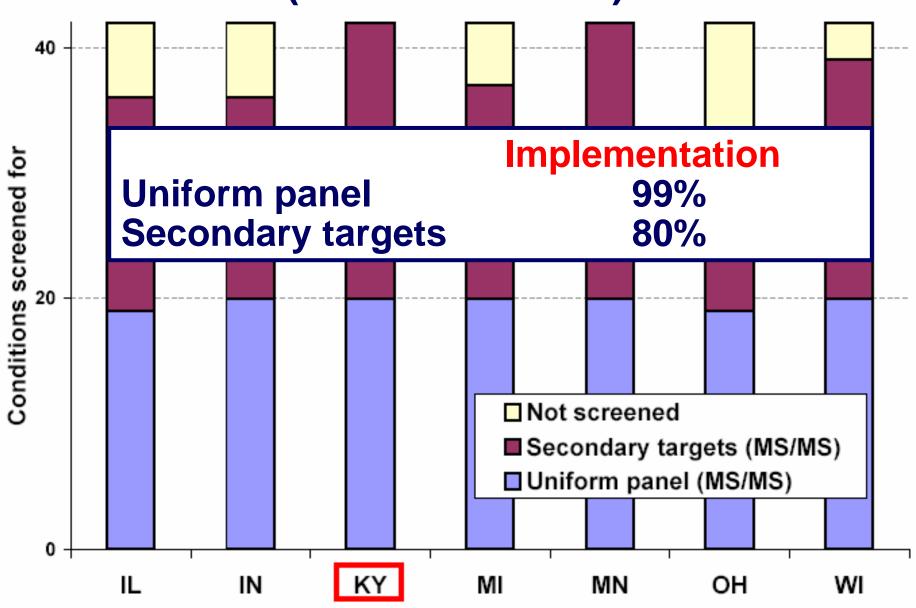
Ν 0 R M

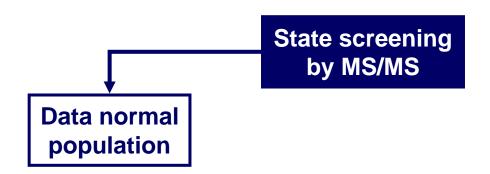
Phenylketonuria MSUD Homocystinuria Tyrosinemia type I **Argininosuccinic acidemia** Citrullinemia type I

MCAD deficiency **VLCAD** deficiency LCHAD deficiency **TFP deficiency Carnitine uptake defect** Isovaleric acidemia Glutaric acidemia type I **HMG** deficiency **3MCC** deficiency **BKT** deficiency

Multiple carboxylase deficiency **Methylmalonic acidemia (MUT)** Methylmalonic acidemia (Cbl A,B) Propionic acidemia

C G N D R


Hyperphenylalaninemia Tyrosinemia type II **Biopterin defects (Bios)** Tyrosinemia type III **Biopterin (Reg) Argininemia Hypermethioninemia** Citrullinemia type II

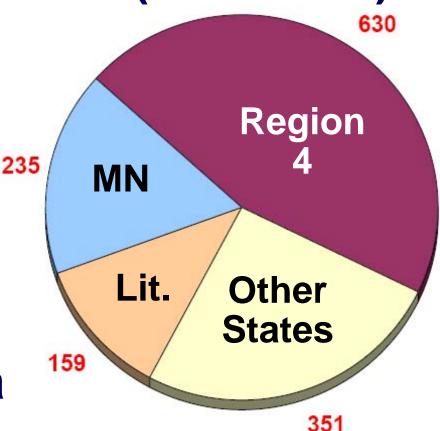

M/SCHAD deficiency **SCAD** deficiency MCKAT deficiency **CPT-I** deficiency **CACT** deficiency Dienovl red. deficiency **CPT-II** deficiency

Methylmalonic acidemia (Cbl A,B) 2M3HBA deficiency **IBG** deficiency 2MBCAD deficiency Glutaric acidemia type II Methylglutaconic acidemia Malonic acidemia

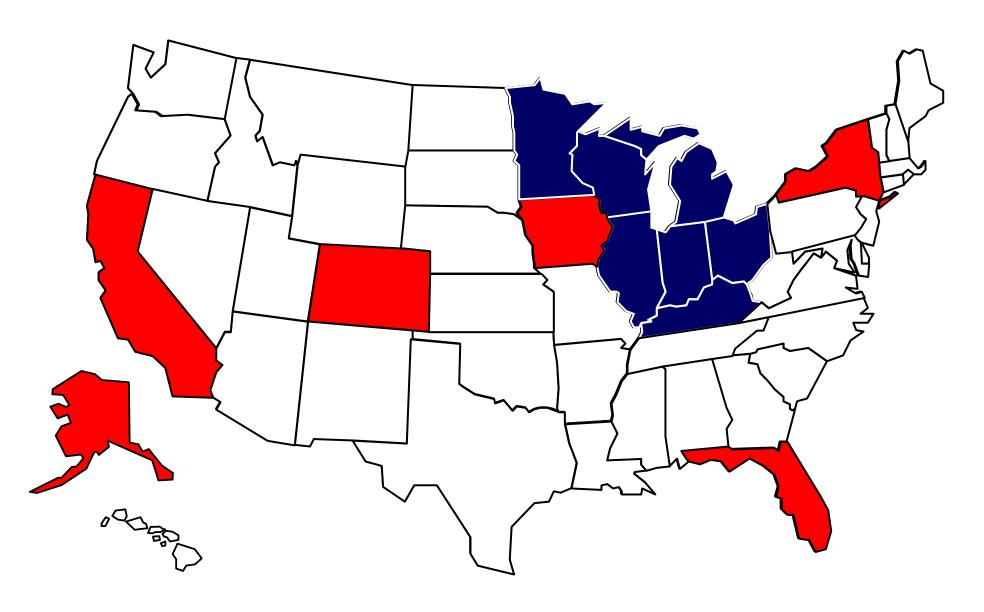
20 Primary targets 22 "Secondary" targets

Implementation of UP 2005 (MS/MS) (December 2005)

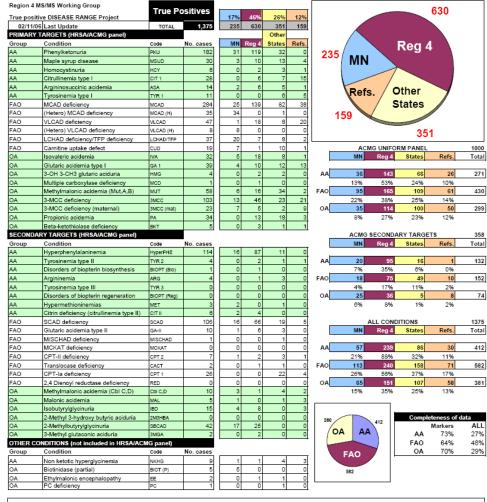
Region 4 – "Score Card"

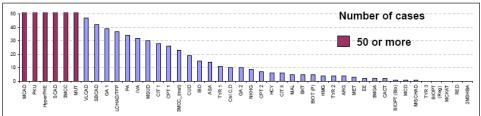

			F	Region	4 - Lab	ora	tory Qu	alit	y Im	prov	/em	ent	Proj	ect													
State/Lab	Minn	esota					AMIN	O A	CID	S																	
Year	2	2005 (1-12	2)	Volume	99,525]	FPR		.08		P	PV	41%		Det	ection	Rate	1: 2,212									
Updated 01/26/06		AL POPU Percentile		(µM)	CUT-OFI State	SD	Abn/		5%ile				Perc	/ES entiles				Tot. # cases 1,345									
ANALYTE	50%	90%	99%	Value	%ile	OFF	10,000	N	<co< th=""><th>LV</th><th>5%</th><th>10%</th><th>25%</th><th>50%</th><th>75%</th><th>90%</th><th>HV</th><th>Condition</th></co<>	LV	5%	10%	25%	50%	75%	90%	HV	Condition									
GLY	184	319	514	700	99.80%	5.1	4.5	8		560	703	846	1,019	1,184	1,265	1,387	1,431	NKHG									
VAL	68	95	140	250	99.93%	7.8		23	YES	100	190	199	313	385	472	638	1,029	MSUD									
ILE/LEU	104	157	244	300	99.65%	4.3	3.5	30	YES	229	266	296	350	685	1,613	2,579	3,452	MSUD									
MET	21	29	49	60	99.47%	3.6	3.2	6		115	151	187	273	570	852	875	888	нсү									
IVIET	21	23	40	80	33.4770	33.4770	33.4170	33.4170	33.41 /0	JJ.41 /0	33.4170	3.0 3.2	3.0	7.41/0 3.0	3.0	.5 5.2	3		112	114	115	120	128	161	181	194	H-MET
								27		97	121	133	207	300	521	683	1,263	CIT-I									
CIT	9	13	19	55	99.98%	12.9	0.2	4		61	62	63	66	115	205	281	331	CIT-II									
								14	YES	37	47	55	66	94	155	209	232	ASA									
PHE	56	74	105	130	99.67%	4.3	2.0	181		145	242	267	325	426	554	812	2,080	PKU									
								113		125	145	151	171	204	256	321	578	H-PHE									
TYR	69	116	191	150	97.06%	2.1	4.2	10	YES	54	85	115	139	218	226	263	293	TYR-I									
								4		220	249	364	430	627	627	949	1,164	TYR-II									
ARG	5	9	18	50	99.94%	10.0	2.3	4		93	110	128	180	268	330	335	338	ARG									
								10		2.1	3.0	3.9	4.9	5.6	8.3	10.7	25.9	ASA									
ASA	0.06	0.13	0.24	0.40	99.85%	6.0	0.1	4		0.58	0.69	0.79	1.11	1.34	2.07	3.28	4.09	ASA									

Cumulative Disease Ranges


• 1,375 confirmed cases (as 2/11/06)

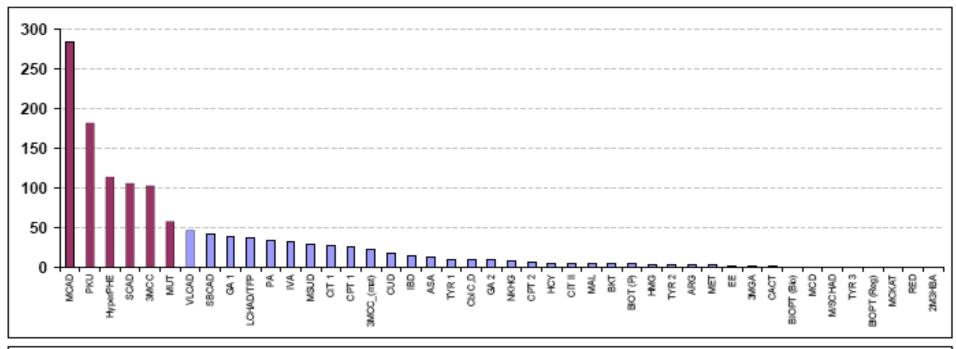
- Minnesota
- Region 4
- Other states
- Literature
- Anonymized data

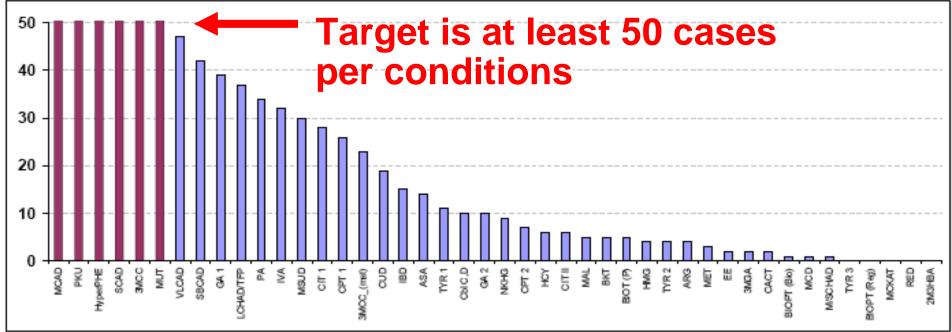



Only first specimens (no repeats)

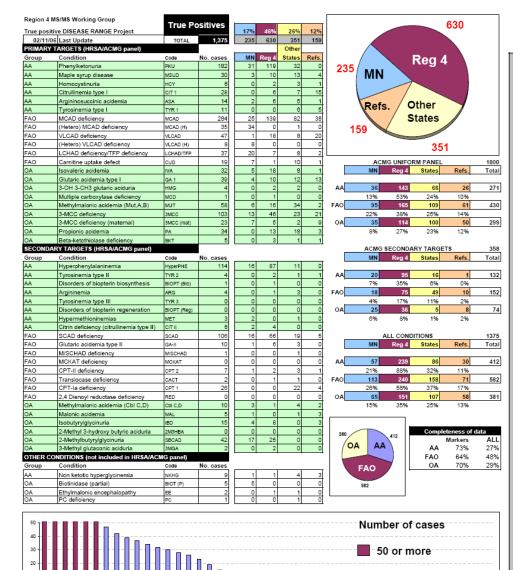
(Actively) Contributing States

Summary Page



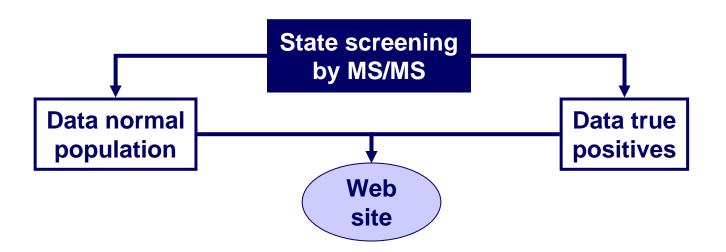


Content of Summary


- Conditions
- Uniform panel
- Secondary targets
- Others

- Sorted by group
 - AA, FAO, OA
- Count
- Source
- Completeness

Summary Page



Count by Year (All States)

CONDITION	2	18	142	322	286	579	26	TOTAL
CONDITION	2000	2001	2002	2003	2004	2005	2006	1375
MCAD	0	4	25	83	55	112	5	284
PKU	0	0	31	47	41	60	3	182
3MCC	0	1	16	15	25	42	4	103
H-PHE	0	0	10	35	29	40	0	114
SCAD	0	2	19	22	23	39	1	106
MMA (A,B)	0	2	9	2	6	39	0	58
SBCAD	0	0	8	9	13	11	1	42
VLCAD	0	1	0	15	4	26	1	47
LCHAD_TFP	0	0	5	8	14	10	0	37
MCAD (H)	0	0	0	0	0	35	0	35
GA1	0	0	1	8	16	10	4	39
PA	0	2	5	6	3	18	0	34
CIT-I	0	0	0	17	3	7	1	28
MSUD	0	0	1	7	5	17	0	30
CPT 1	1	3	0	0	10	12	0	26
IVA	0	0	2	10	4	14	2	32
3MCC (mat)	0	0	3	6	1	13	0	23
CUD	1	0	0	0	5	10	3	19
ASA	0	0	1	2	8	3	0	14
IBD	0	0	1	6	4	4	0	15
CBL C	0	1	2	3	1	3	0	10
TYR-I	0	0	0	1	3	7	0	11
GA-II	0	0	1	1	3	5	0	10
NKHG	0	0	0	3	1	5	0	9
VLCAD (H)	0	0	0	1	0	7	0	8
HCY	0	0	0	2	1	3	0	6
CPT 2	0	1	0	1	0	5	0	7
MAL	0	0	0	3	0	2	0	5
BIOT (P)	0	0	0	0	1	3	1	5
BKT	0	0	0	2	0	3	0	5
CIT-II	0	1	0	1	1	3	0	6
HMG	0	0	0	2	0	2	0	4
TYR 2	0	0	0	1	0	3	0	4
ARG	0	0	0	1	1	2	0	4
MET	0	0	0	0	3	0	0	3
CACT	0	0	0	0	1	1	0	2
EE	0	0	0	1	0	1	0	2
MGA	0	0	2	0	0	0	0	2
BIOPT (bio)	0	0	0	0	1	0	0	1
MCD	0	0	0	1	0	0	0	1
PC	0	0	0	0	0	1	0	1
SCHAD	0	0	0	0	0	1	0	1
2M3HBA	0	0	0	0	0	0	0	0
BIOPT (reg)	0	0	0	0	0	0	0	0
MCKAT	0	0	0	0	0	0	0	0
RED	0	0	0	0	0	0	0	0
TYR 3	0	0	0	0	0	0	0	0

Count by State (All Years)

STATE	MCAD	PHOU	змос	н-РнЕ	SCAD	MNA (A,B)	SBCAD	VLCAD	LCHAD TFP	GA1	PA	CIT4	MSUD	IVA	3MCC (mat)	ASA	CUD
1375	284	182	103	114	108	58	42	47	37	30	34	28	30	32	23	14	19
AL 1 AK 22	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A8 0	0	0	0	o	0	0	0	0	0	ő	0	0	0	0	0	0	ő
AZ 0		0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0
CA) 76	16	0	6	0	3	8	0	3	4	7	3	3	3	. 1	0	0	5
CT 0		2 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DE) 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FL 3	1	0	ō	0	o	o o	o	0	ő	0	0	0	0	0	0	0	0
HI) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ID 10 IL 210		0 34	0	0 43	0 37	0	0	0	0	0	0	0 2	0 3	10	0	0	0
IN) 78	17	27	9	4	6	1	0	3	1	2	1	0	2	0	0	0	0
IA 44 KS 0		14	3	8	8	0	0	0	0	0	0	0	0	0	0	0	0
KY) 6		2	1 0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
ME) 0	0	0	ō	0	o	ő	ő	ő	ő	0	0	0	0	0	0	0	ő
MD 1 MA 10	0	0	0	0	0	0 2	0	0	0	0	3	1 0	0	0	0	0	0
MI) 68	22	16	1	13	1	0	1	3	2	0	1	1	3	0	1	1	1
MN 188		31 0	13	16	16	5	17 0	0	19	0	0	0	3 0	5	7 0	0	0
MO 3 MT 0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NE 0	0	o o	ō	0	ō	0	0	0	o	o	0	0	0	0	0	0	0
NV 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NJ 2 NM 1		0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NY 90	35	15	13	3	8	2	0	0	2	1	1	1	1	0		- 1	3
NC 3		0	0	0	0	0	0	0	0	0	0	0	0	5	2 0	0	0
OH) 126	41	28	7	27	1	0	0	5	2	1	4	2	0	0	3	0	0
OK 1		0	0	0	0	0	0	0	0	0	0	0	0	1 0	0	0	0
PA 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RI 0	0	o	0	0	ō	0	ő	o	0	ő	0	0	0	0	0	0	0
8A 41 8C 0		1 0	0	0	0	13	0	4	1 0	0	9	0	5	0	0	3	0
8D 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TX 2		0	ő	o	o	0	0	0	ő	ő	o	o	ő	ő	ő	0	ő
UT 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VI) 0	ò	0	0	0	ō	ő	ő	0	ō	o o	0	0	0	0	0	0	0
VA 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WV) 3	0	0	0	0	Ö	0	0	0	0	0	0	0	0	3	0	0	0
WY 1	0	12	19	0	19	9	24 0	0	0	3	7 0	0	0	0	0	0	0
JP 20		0	21	0	5	2 8	0	20	2	14	3 2	15	4 4	0	9	1 0	1
QLD 12		o			o	_				_			_			0	0

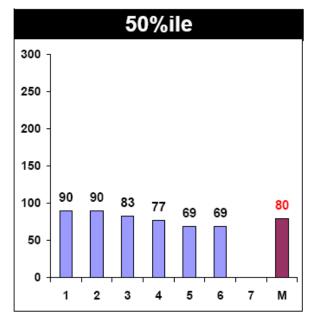
- About the Collaborative
- Events
- State Links
- Resources
- -Advisory Group
- Newborn Screening by MS/MS
- -Clinical Diagnosis &

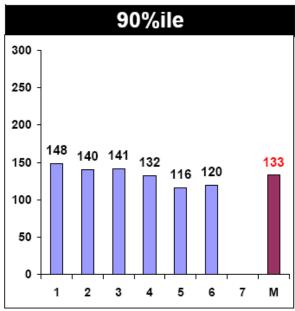
Management

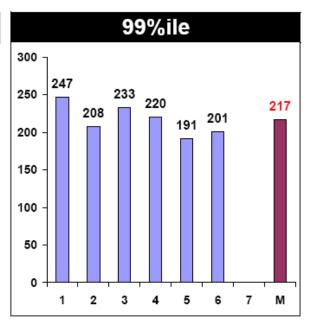
Public Health Infrastructure

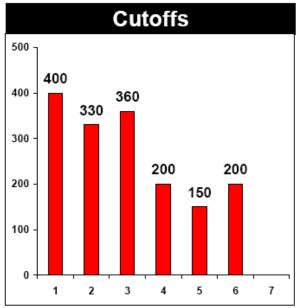
National Genetics File Libraries

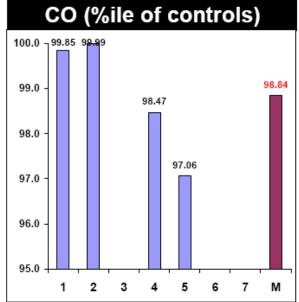
Administration Section

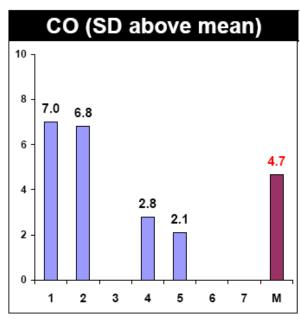

Name	Description	Add File	View Files
True Positives	True Positives	Click Here	Click Here
True Positives - Illinois	True Positives - Illinois	Click Here	Click Here
True Positives - Indiana	True Positives - Indiana	Click Here	Click Here
True Positives - Kentucky	True Positives - Kentucky	Click Here	Click Here
True Positives - Michigan	True Positives - Michigan	Click Here	Click Here
True Positives - Minnesota	True Positives - Minnesota	Click Here	Click Here
True Positives - Ohio	True Positives - Ohio	Click Here	Click Here
True Positives - Wisconsin	True Positives - Wisconsin	Click Here	Click Here
Cutoff Ranges	Cutoff Ranges	Click Here	Click Here
Score Cards	Score Cards	Click Here	Click Here

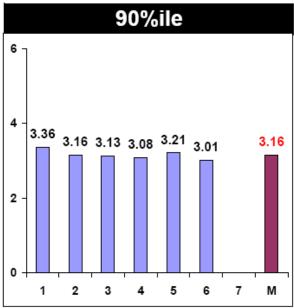

Log Out

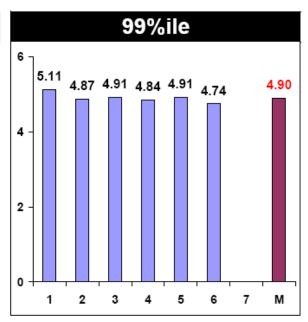


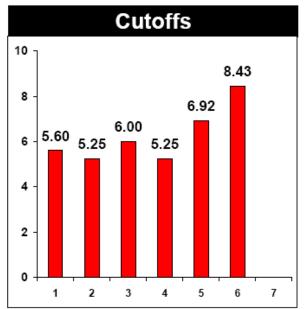

Updated 01/23/06

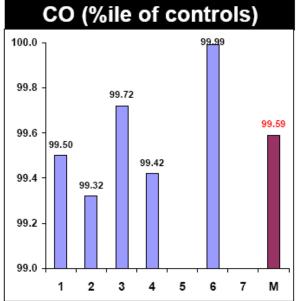

TYROSINE

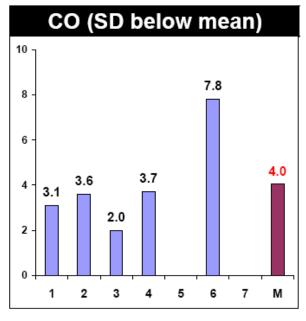


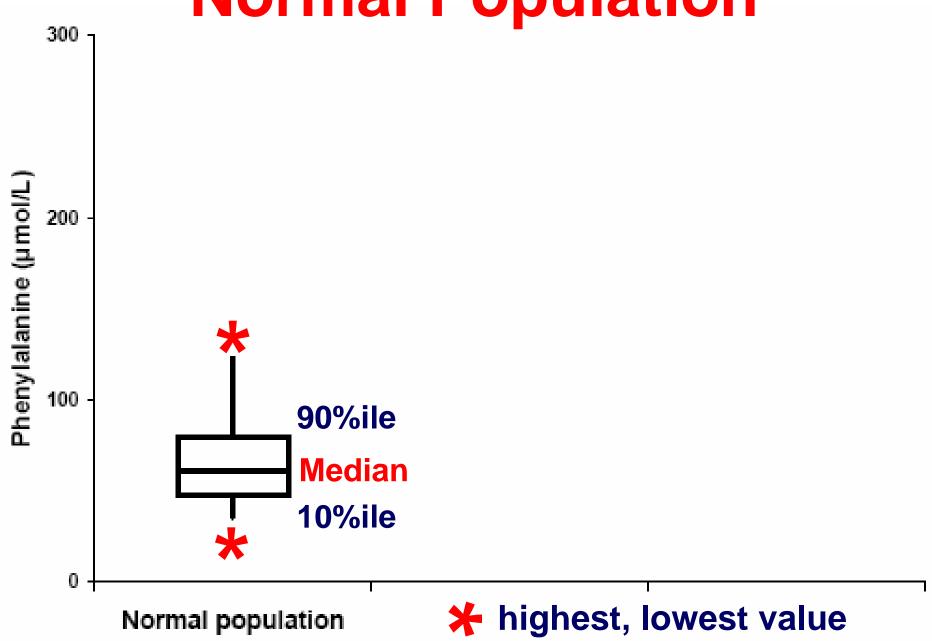


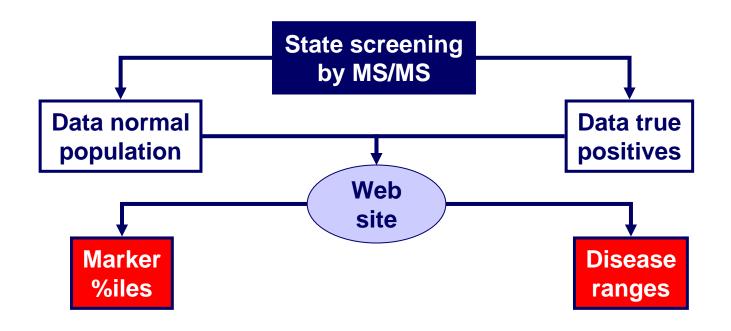


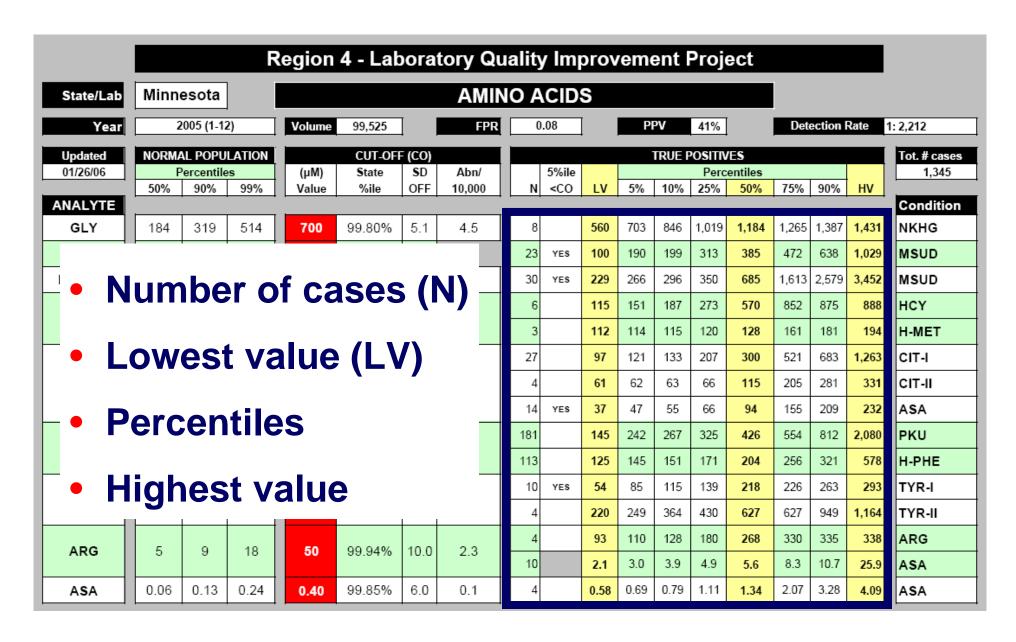

Updated 01/23/06

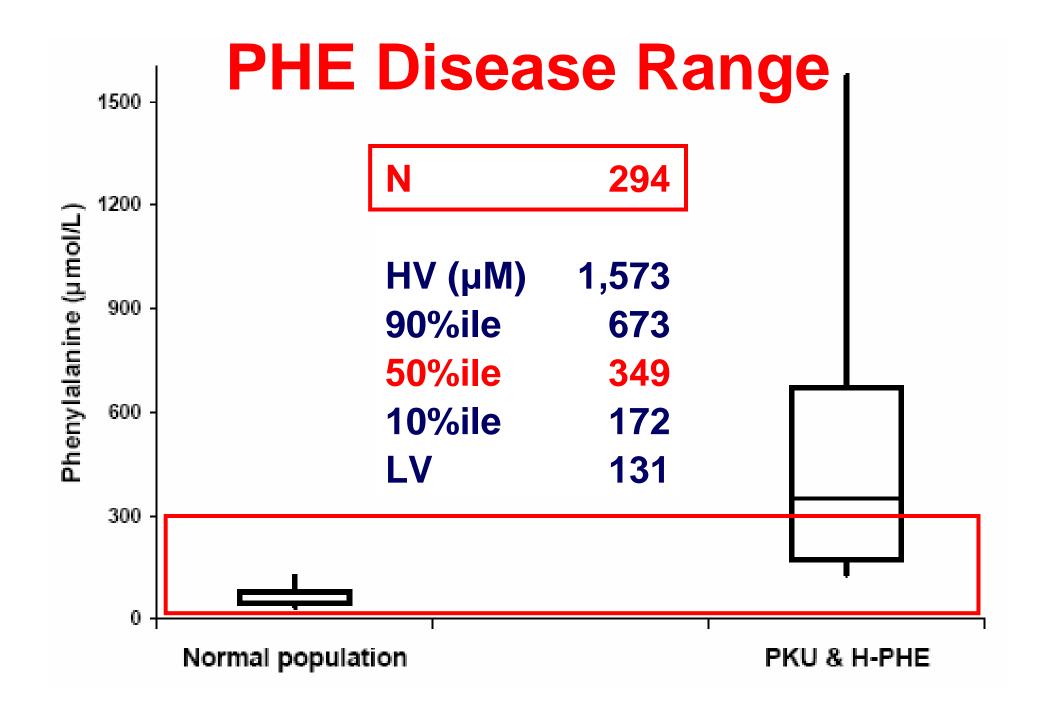

C3

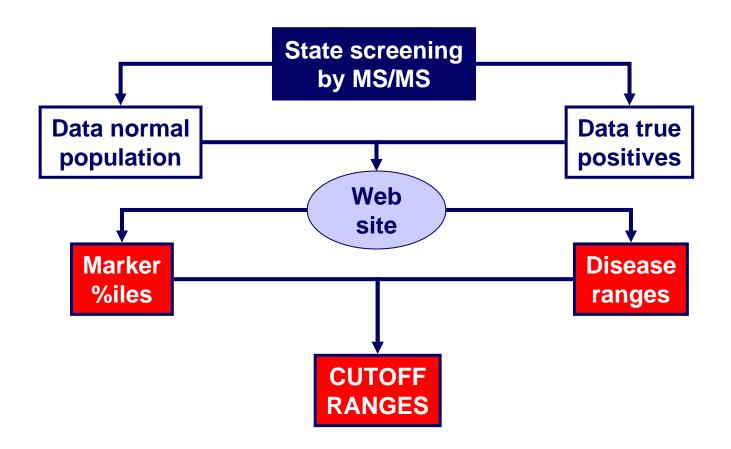








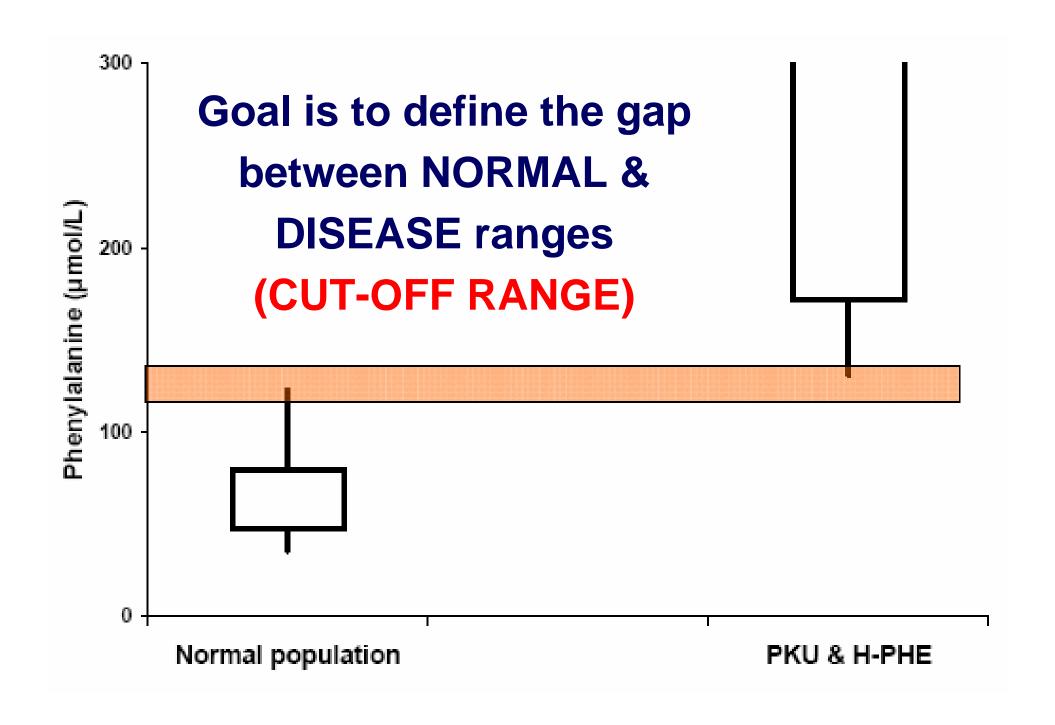

Normal Population

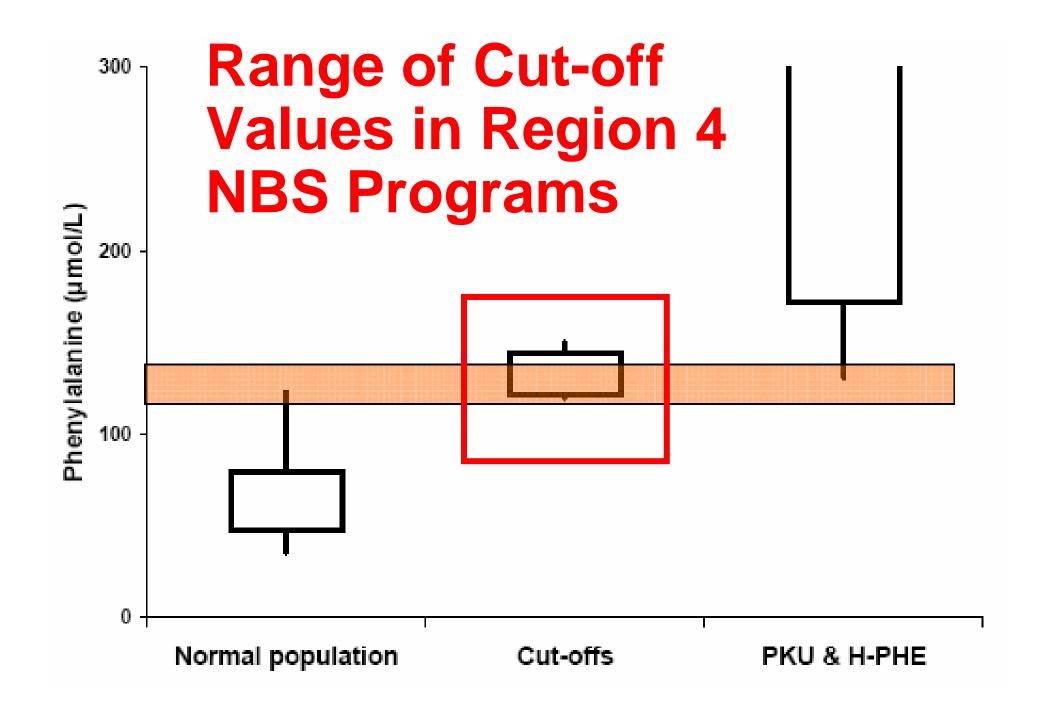


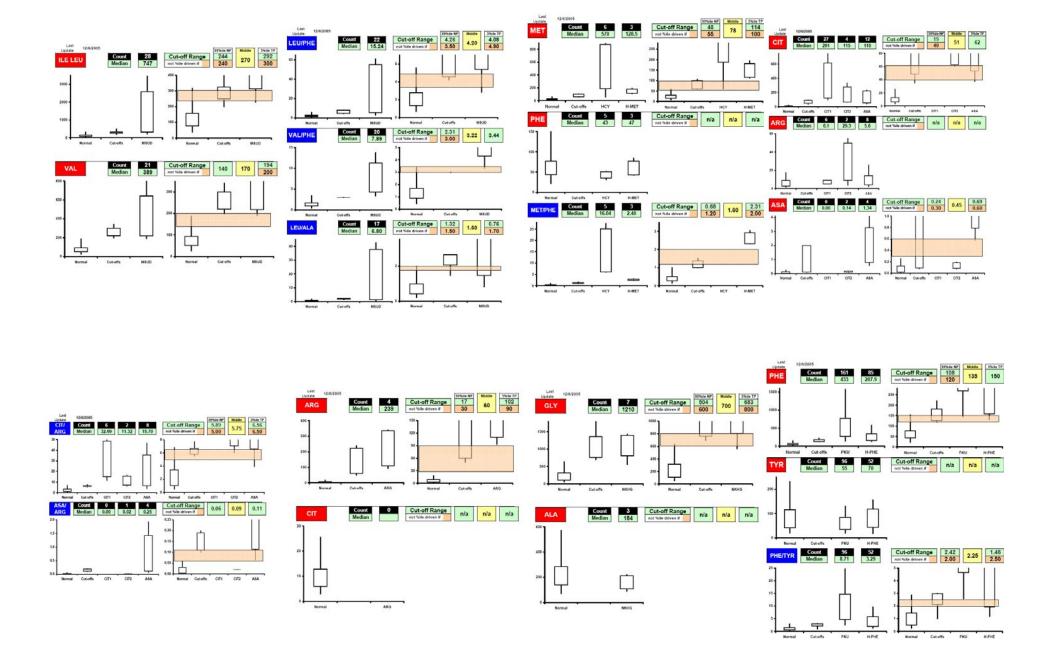
Region 4 – "Score Card"

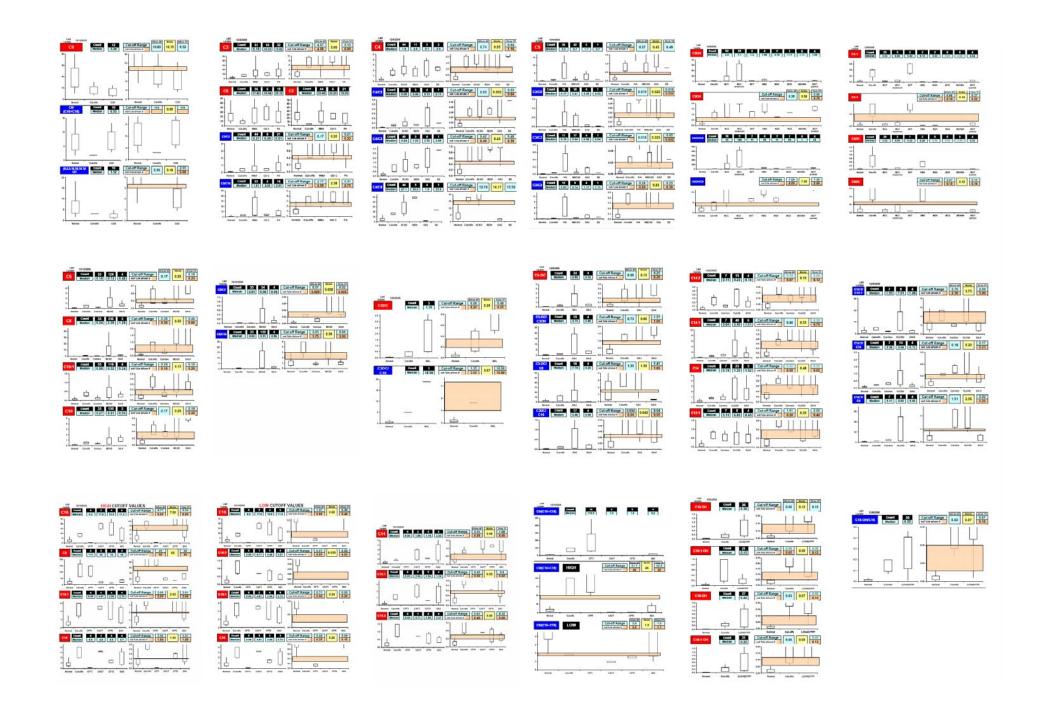
Selection of Cut-Off Value

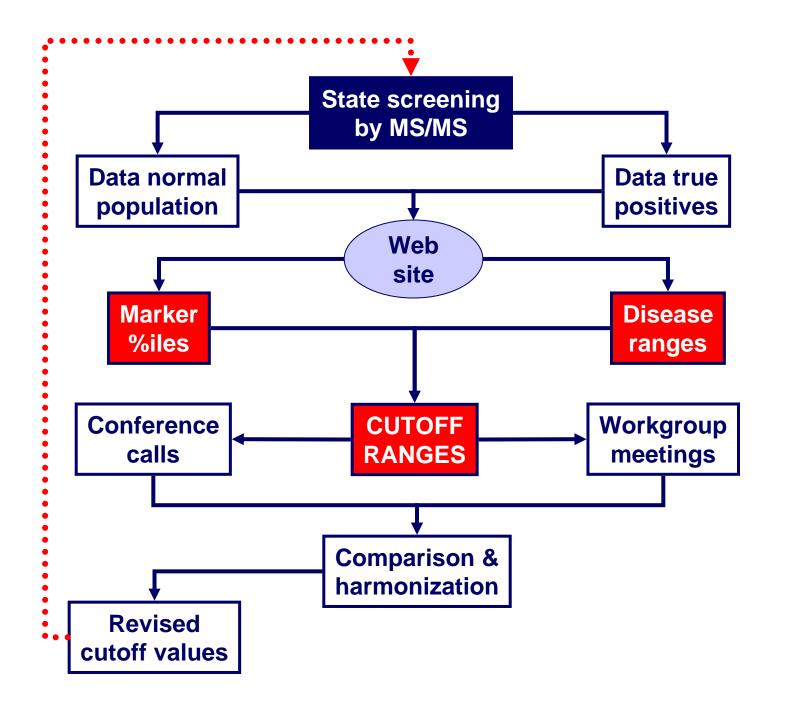
- Based on either fixed %ile or (SD)_n
 above mean of NORMAL population
- Increases driven by false positives
- Decreases driven by false negatives (usually followed by scores of false positives)
- Disconnected from clinical significance

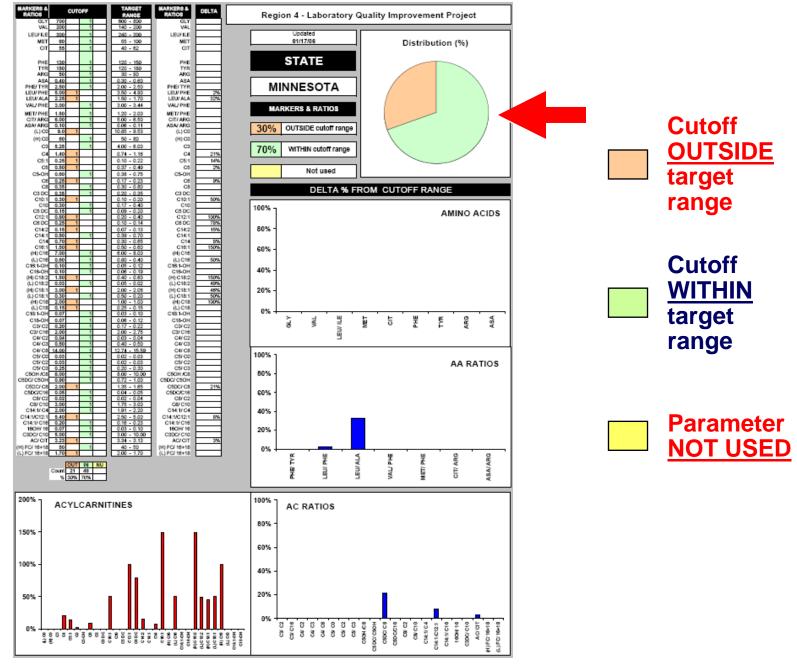

Cut-Off Values

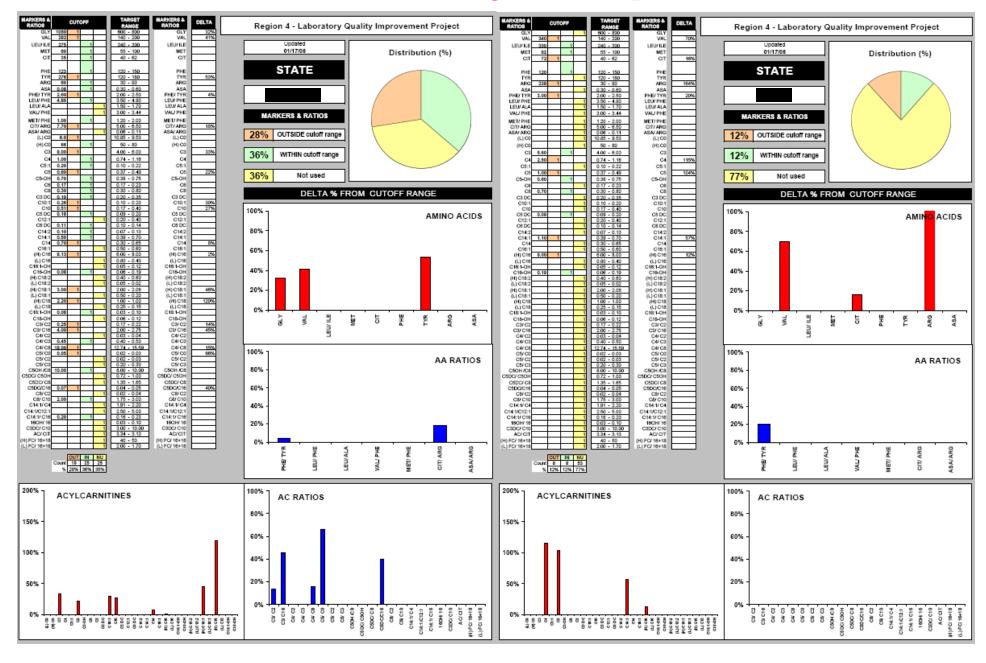

- Value
- State %ile
- SD off mean
- Repeats/10,000


cases (RAR)

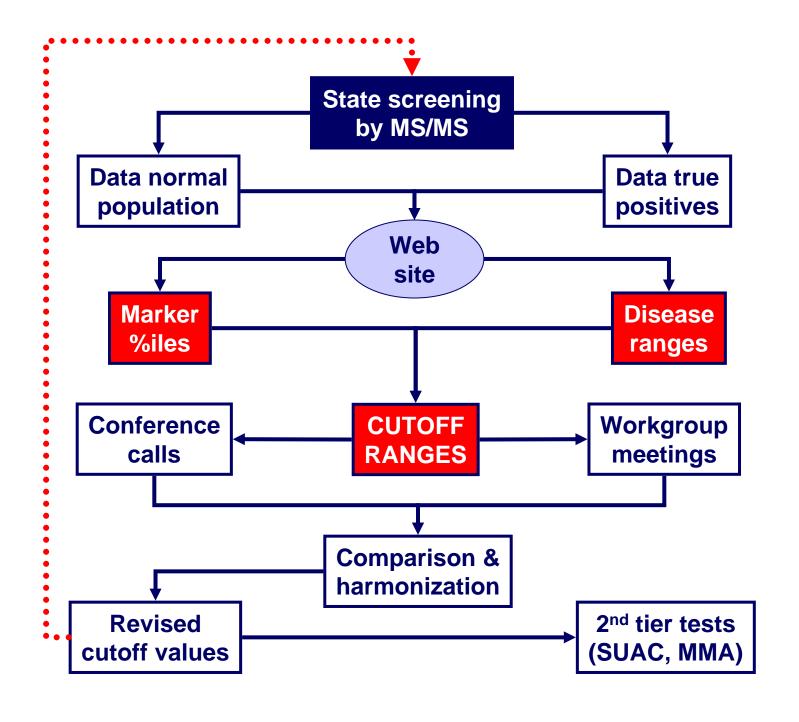

	Value	%ile	OFF	10,000
GLY	800	99.93%	6.4	2.5
VAL	250	99.94%	10.5	0.0
ILE/LEU	300	99.70%	4.9	3.1
(HCY) MET	60	99.47%	3.5	4.2
(HMET) MET	80	33.47 70	5.5	7.2
(I) CIT		99.98%	11.9	
(II) CIT	55			0.3
(ASA) CIT				
(PKU) PHE	130	99.53%	3.8	2.1
(HPHE) PHE	130	99.5576	5.0	2.1
(I) TYR	150	96.82%	2.0	5.4
ARG	90	00.079/	20.0	2.4
(ASA) ARG	80	99.97%	20.0	3.4
ASA	0.50	00.038/	6.7	0.1
(CIT I) ASA	0.50	99.93%	6.7	0.1


CUT-OFF (CO)



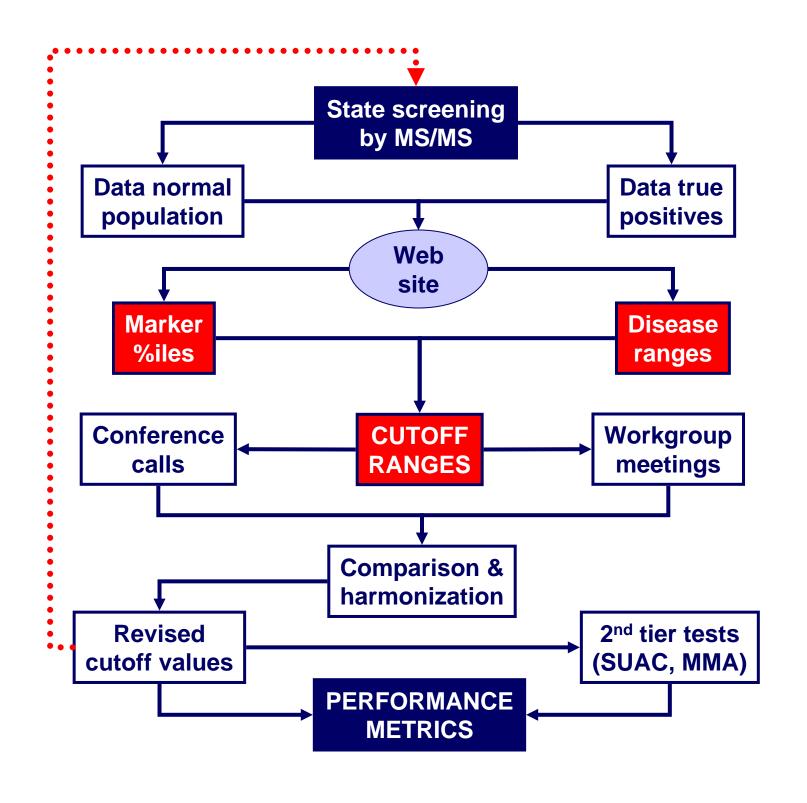


MS/MS "Quality" Report Card



MS/MS "Quality" Report Card

Status of Cutoff Ranges (as 01/31/06, N=69)

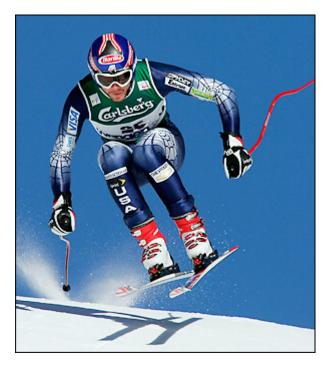

	Region 4	Median	Range
	Adequate	29%	12% - 71%
Not	adequate	34%	12% - 58%
	Not used	41%	0% - 77%

Implementation of 2nd Tier Tests (as 02/11/06)

Region 4	SUAC	MMA	HCY	CAH
Illinois	(*)	-	-	-
Indiana	-	-	-	-
Kentucky	+	+	+	+
Michigan	+	(±)	-	(+)
Minnesota	+	+	+	+
Ohio	+	-	-	-
Wisconsin	-	-	-	-
Other states	(+)	(±)	(±)	+

^(*) in house; (±) sporadic use; (+) under implementation

Region 4 Collaborative Project: Performance TARGETS



Is this a true measure of SUCCESS?

FPR < 0.30%

PPV >20%

Detect. rate <1:3,000

"Defining your criteria for success is easier when you suck. As you get better, it becomes harder. The steps are smaller."

Bode Miller

Newsweek, January 23, 2006 (p. 44)