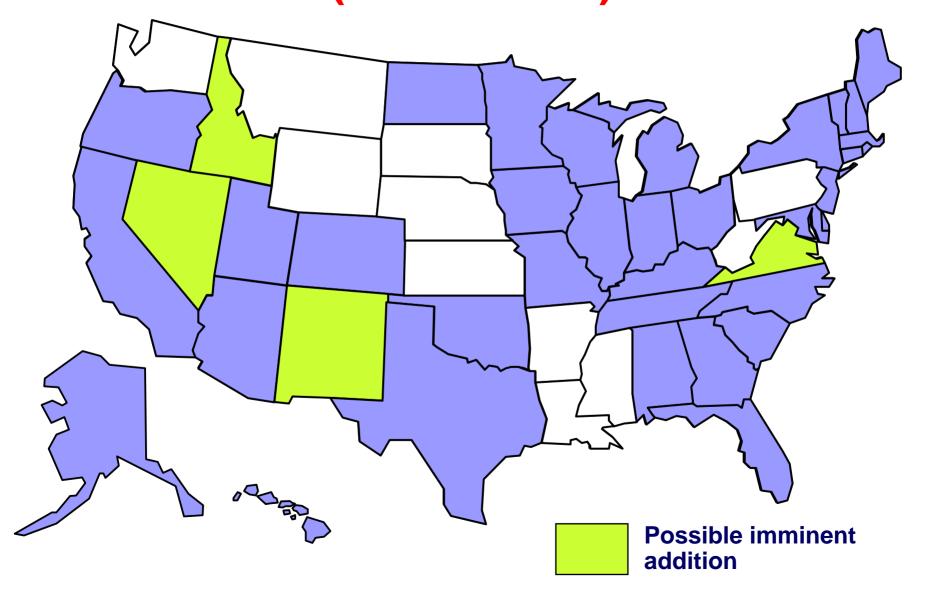
Region 4 Collaborative Project Laboratory Quality Improvement (Newborn Screening by MS/MS)

Piero Rinaldo, MD PhD

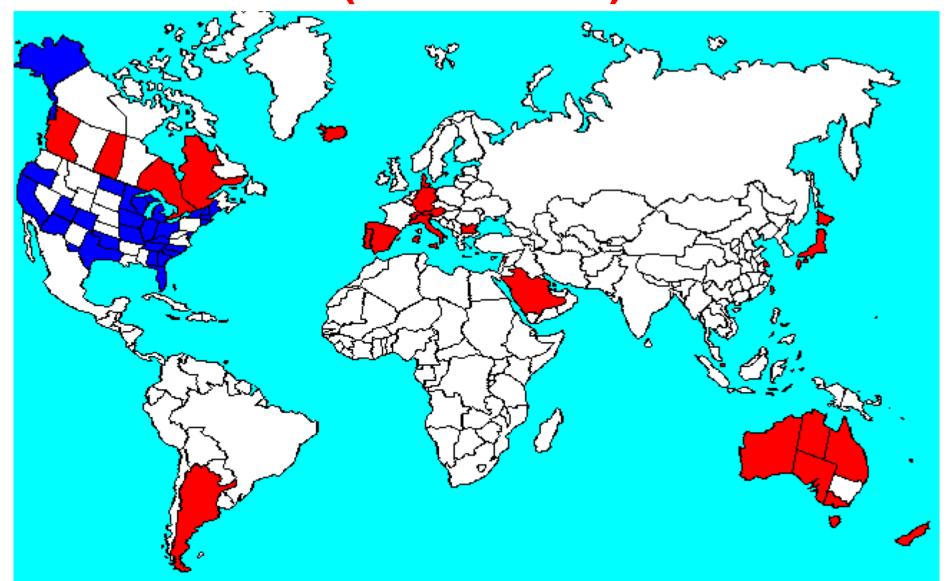
T. Denny Sanford Professor of Pediatrics
Professor of Laboratory Medicine
Mayo Clinic College of Medicine, Rochester, MN

Washington, May 18th, 2007
Advisory Committee on Heritable Disorders and Genetic
Diseases in Newborns and Children

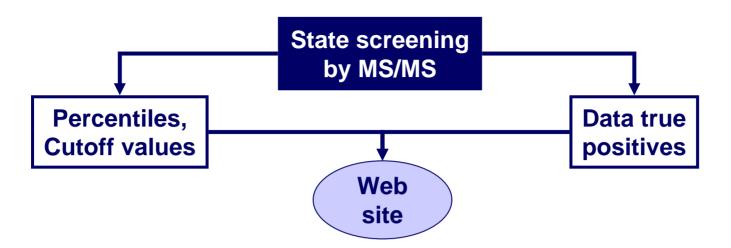
Regional 4 Collaborative Project


Project is based on <u>active participation</u> of NBS labs

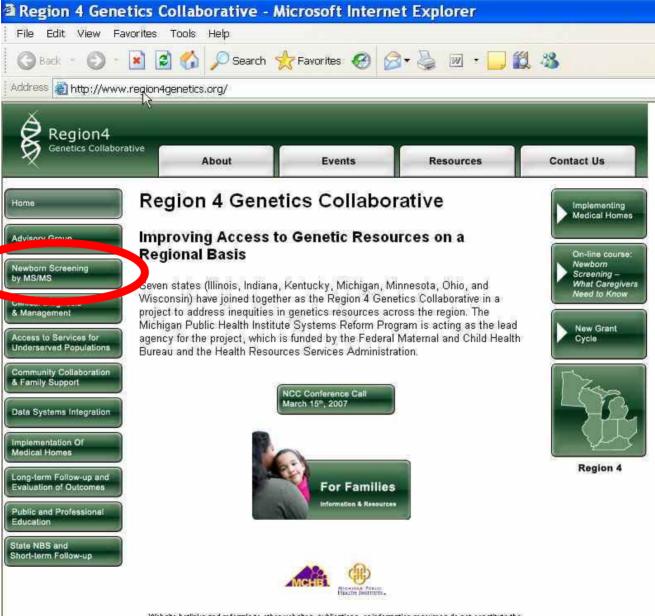
Active Participation


- Timely submission of data
 - %iles of normal population
 - Cutoff values
 - True positive cases
 - Performance metrics
- Involvement in other activities
 - Sample exchange
 - Conference calls
 - Training courses
 - Working group meetings

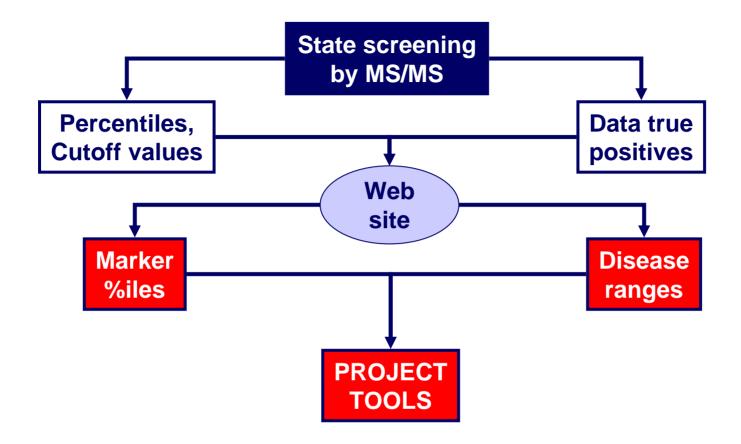
Active US Participants (as 05/17/07)



Active International Participants (as 05/17/07)

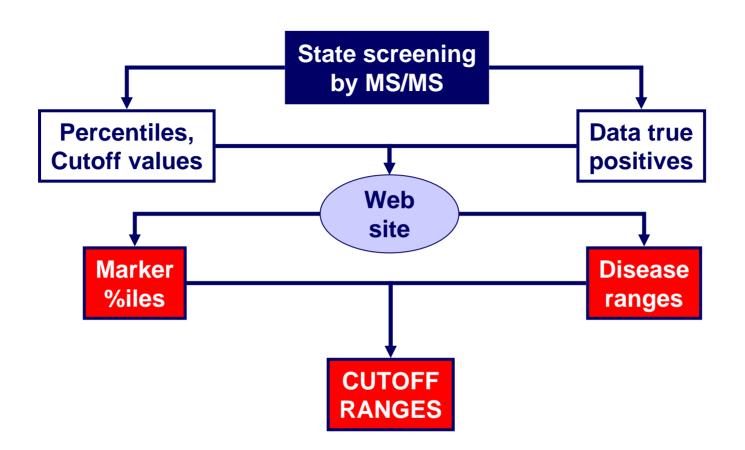

Regional 4 Collaborative Project

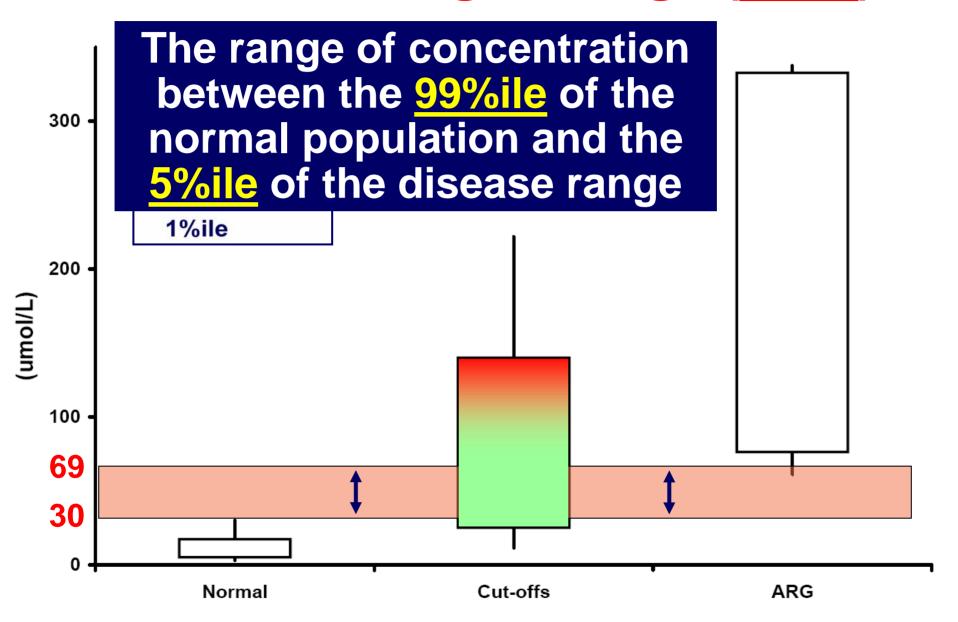
- Project is based on active participation of NBS labs
- Standardized collection of NBS data (MS/MS only)
- Data collected
 - %iles of normal population (AA, AC, ratios)
 - Cutoff values (as used in local routine practice)
 - AA and AC values of confirmed positive cases
 - Performance metrics (PPV, FPR, det. rate)



www.region4genetics.org

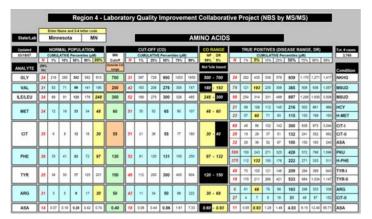
Website hotlinks and referrals to other websites, publications, or information resources do not constitute the endorsement of those websites or resources by the Region 4 Genetics Collaborative, its agents or its representatives. This site is for informational purposes only and does not provide medical advice.


Project in Numbers	Dec-06	May-07	Delta
US participants	30	38	27%
International participants (countries)	28 (16)	33 (20)	18% (25%)
True positive cases	2,950	3,865	31%
Collected data points			
True positive analytes & ratios	149,948	168,086	12%
Informative markers	8,676	11,497	36%
Percentiles (contributors)	3,756 (19)	7,822 (37)	108% (95%)
Cutoff values (contributors)	1,493 (35)	2,345 (57)	57% (63%)
Conditions with >50 cases			
Uniform panel	14/20	14/20	0% (2>40)
Secondary targets	3/22	3/22	0% (2>40)


- Monthly updates
- Posted on website

www.region4genetics.org

The Cutoff Target Range (ARG)



The Score Card (AA)

Region 4 - Laboratory Quality Improvement Collaborative Project (NBS by MS/MS)

		Enter N	lame ar	nd 2-4 l	etter co	ode]																	
State/Lab		Minr	esota	a	N	ΛN							ΑM	INO ACIDS	;									
Updated 05/07/07			MAL P				MN			-OFF (tiles (µM)	CO RANGE NP DR		TRU			•	EASE R		E, DR)		Tot. # cases 3,856
ANALYTE	N (99%	1%				99%	Cutoff Outside CO range	N	1%	25%	50%	75%	99%	99% 5% Not %ile based	N	1%	5%	10%	25%	50%	75%	90%	99%	
GLY	ile)	217	285	413	594	814	700	31	387	728	949	1105	1850	500 - 700	24	282	435	539	576	939	1,170	1,271	1,417	Condition NKHG
VAL	31	55	71	101	141	199	200	42	163	206	276	300	747	180 <mark>- 193</mark>	75	122	193	231	306	355	505	634	1,056	MSUD
ILE/LEU	34	69	91	123	178	248	300	53	168	275	300	325	484	248 - 300	99	254	315	332	467	694	1,260	1,914	3,490	MSUD
MET	34	12	16	23	34	48	60	52	30	52	66	91	106	48 - 60	23	69	77	99	120	216	487	854	964	нсү
	L					70		L		02		01		45 66	23	57	60	71	93	115	130	169	193	H-MET
								Г							71	35	82	100	138	291	634	969	2,984	CIT-I
CIT	35	6	8	12	18	30	55	52	21	36	58	77	180	30 - 40	29	19	29	37	51	132	241	352	882	CIT-II
															34	28	34	42	66	100	147	164	240	ASA
PHE	36	33	41	53	71	98	130	53	81	120	132	150	250	98 - 132	604	150	242	271	325	426	572	798	1,590	PKU
															384	112	132	150	176	221	270	333	507	H-PHE
TYR	35	35	50	78	125	201	150	50	112	200	301	400	651	120 - 150	48	70	105	121	146	209	294	389	643	TYR-I
	L							L				.55		120 100	18	170	211	266	421	533	684	1,034	1,147	TYR-II
ARG	31	3	5	9	17	30	50	43	11	34	50	98	222	30 - 69	7	61	69	80	105	181	268	332	338	ARG
71.0	L					-		L		Ŭ.					27	4	7	8	16	31	48	87	152	CIT-II
ASA	14	0.10	0.16	0.28	0.42	0.74	0.40	19	0.06	0.46	1.00	1.84	7.31	0.60 - 0.90	13	0.20	0.41	0.72	1.39	4.03	7.20	85.28	105.7	ASA

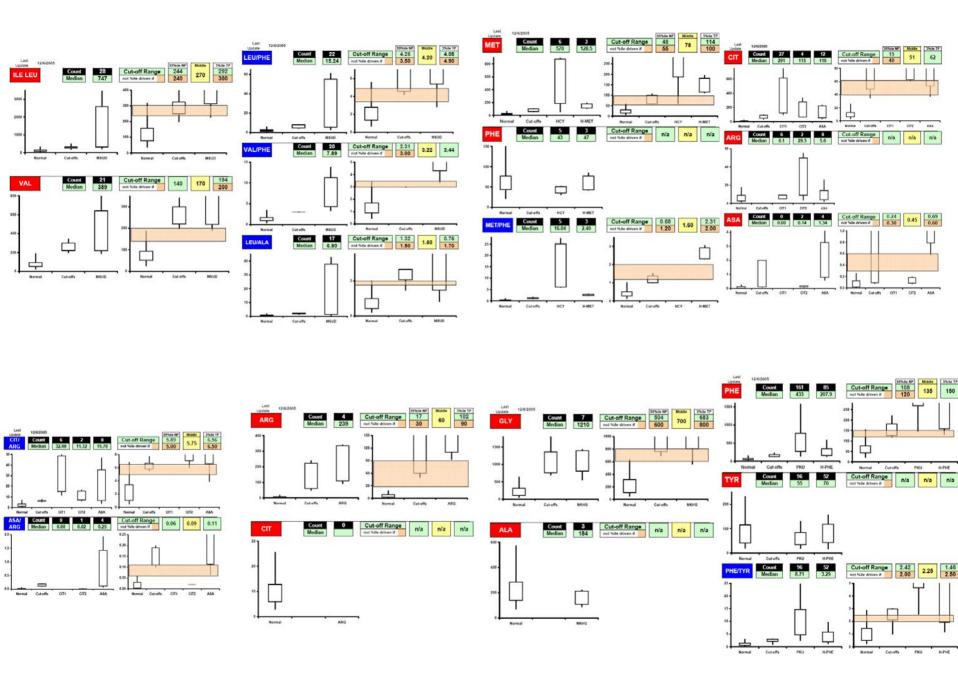

AA (9)

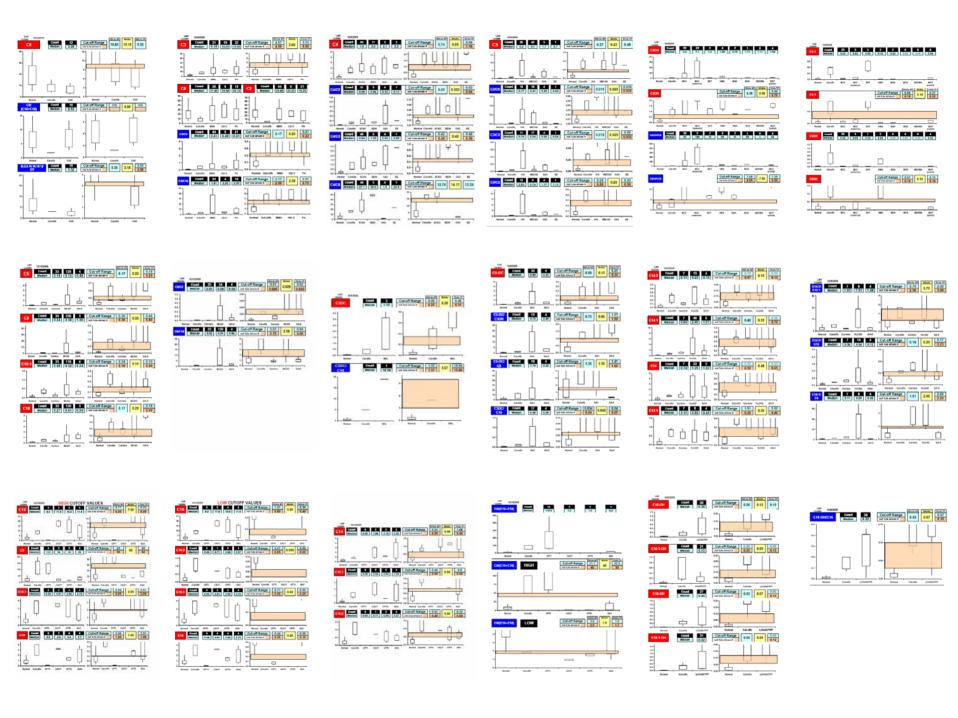
AA Ratios (7)

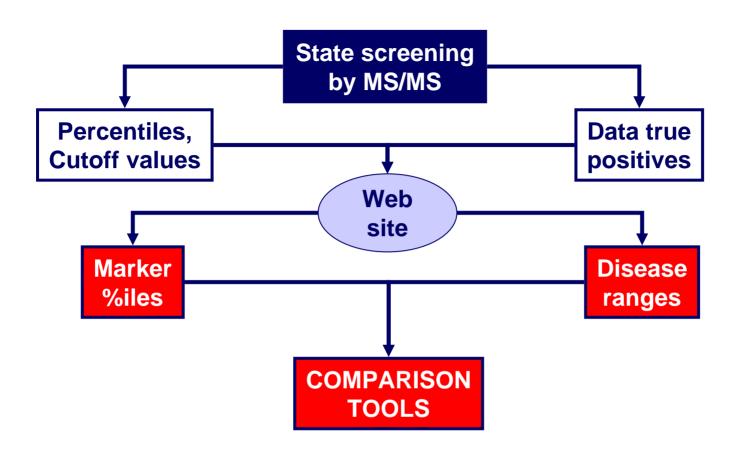
				R	egio	on 4	Labor	ato	ry Qı	ualit	y Imp	rove	mer	t Collabor	ative	Pro	ject (NB:	S by	MS/I	MS)			
State/Lab		Minr	nesot	a	1	MN]					AMIN	10 A	CID RATIO	s									
Updated 03/19/07			AUL FO				MN			OU IO	(0) ME Pero	entiles		CO RANGE NP DR			TRUES			esse Ras ersentile)		Tot. # cases 3,765
RATIO	N	4%	10%	50%	90%	99%	Cutoff Outside CO range	N	1%	26%	50%	75%	99%	90% 5% Not Nile based	N	1%	.5%	10%	25%	50%	75%	90%	9944	Condition
VAL/PHE	13	0.99	1.30	1.70	2.51	3.21	3.00	13	0.64	2.98	3.00	3.70	5.00	3.21 - 3.36	54	1.23	2.09	3.63	5.88	7.89	9.55	11.66	20.87	MSUD
LEU/PHE	24	1.20	1.61	2.25	3.10	4.24	4.50	32	2.42	4.50	5.00	6.06	12.37	4.00 - 4.50	62	1.73	4.00	0.51	9.21	13.96	22.50	42.73	81.44	MSUD
LEU/ALA	15	0.28	0.36	0.52	0.71	0.96	2.25	18	0.88	1.19	1.63	2.25	2.87	0.96 • 2.25	46	0.31	0.85	1.62	3.01	5.21	11.28	30.76	75.54	MSUD
MET/PHE	22	0.23	0.31	0.42	0.57	0.75	1.50	27	0.50	0.93	1.00	1.28	4.39	0.75 - 1.50	21	1.47	1.50	1.55	2.51	4.22	7.23	16.04	26.32	HCY
															19	0.94	1.01	1.09	1.59	2.08	2.45	3.11	4.85	H-MET
								Г							29	6.11	6.82	0.99	18.13	42.76	08.84	99.32	430.2	CIT-I
CIT/ARG	19	0.44	0.79	1.41	2.79	5.00	6.00	19	209	5.10	6.00	8.49	9.84	5.00 - 6.59	27	0.73	0.96	1.53	2.89	5.16	7.00	13.53	18.75	CIT-II
	L							L							25	0.39	2.07	4.98	8.24	10.11	17,44	30.50	40.40	A\$A
PHE/TYR	٦,	0.29				1.67	2,50	47	1.19	1.72	2.37	2.50	5.00	1.67 - 1.76	505	1.84	3.40	4.12	6.13	8.59	12.08	10.82	38.70	PKU
PRE/TYR	Ľ	0.29	0.44	0.73	1.11	1.07	2.50		1.19	1.72	2.37	2.59	5.00	1.07 - 1.76	323	1.14	1.44	1.76	2.51	3.41	4.50	0.29	10.87	н-РНЕ
ASA/ARG	5	0.01	0.02	0.06	0.11	0.26	0.10	4	0.10	0.22	0.42	0.50	0.60	0.07 - 0.11	12	0.07	0.11	0.16	0.23	0.38	0.86	1.83	22.16	A5A

AC (27)

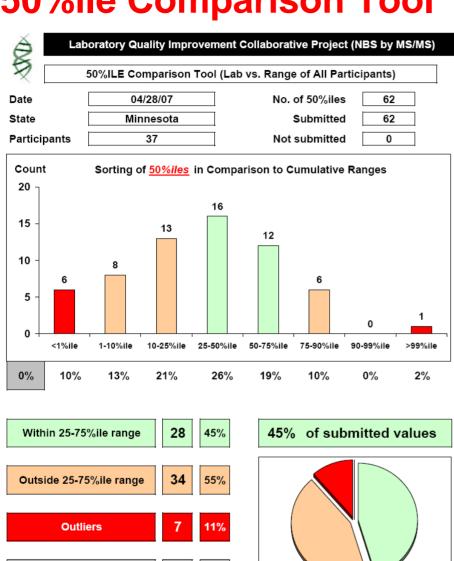
												AC	YLGA	RNITINES										PAGE
1000	ı		m	me		THE	ÇAT 1984	ļ		***		-	W.	O Mari	F			EC.	10 00	554	-			10
AAALYTT	liz	m	to i	m	till	Ma	COLUMN	di	m	100				and this based	000	100	1000					TO SE	1000	Condition
1000	1	Г	Г		Г	W.	11/	Г	Г					77000	171	111	8.85	1.10	114	1,11	189	111	411	MCAD
Cit	H	110	114	**	811	4.66	174	и	411	1.24	6.36	0.45	145	416 - 426	11	£1)	9.4	819	11	4.19	111	147	141	MCAD (NE
200	L						177	L						V121007.1	11	11	1.9	111	111	1.63	111	187	1.0	SAI
	1	Г	Т	Г	Г			Г	Г	Г	Г	П			m	14	1.71	(8)	111	731	114	811	**	MCAD
CB	М	14	160	10	8.8	8.00	8.99	н	1.11	1.30	6.35	149	141	626 - 671	11	19	18	8.01	116	9.37	636	1.0	188	MCAD BWE
	L		100			***		L						Vin Viginia	н	1.01	18	10	111	147	112	19	122	GAZ
	Т	Г	Г	Г	Г			Г	Г		Г	Г				10	1.11	111	114	133	114	1(6	181	MCAD
CHRIT	.14	10	1.0	**	11	14	8.12	u	138	111	8.38	0.37	247	410 - 816	17	8.07	10	137	111	6.12	111	10	1.0	MCAD (HH)
								L							н	10	164	111	1/1	8.17	111	141	188	OAI
-11.77	Т	Г	1		П			Г							161	111	40	40	M	188	1))	114	1.00	MIAD
C10	i	100	100	***	1.17	10	1.0	"	111	1.33	131	0.40	111	825 - 820	Ħ	111	1/1	1,0	111	139	111	10	£11.	MCAD (Hel)
	L							L							n	131	10	117	16	1.83	in	138	127	GAJ
CHOC	17	110	144	111	519	111	8.31	11	6.10	0.14	9.26	0.36	241	816 - 842	"	141	9.41	144	141	134	111	181	141	MAL
-	1		1	_	Г			۳	1	-		Г			183	10	8.0)	111	14	111	186	134	461	GAT
CSDC	H	481	10	698	14	10	410	μ	0.00	4.19	0.30	9.82	1,10	410-613	11	10	111	110	10	131	141	140	679	IAI
	Ш							П	11					0.00	1	114	111	10	111	111	811	131	111	GATING


								_					AU	/LCA	SECTION IS	_				_						PAGE 3
ANALYTI	ŀ	_	-	1100		T.	195	LAN VALUE VA VA VALUE VA VA VA VA VA VA VA VA VA VA VA VA VA	T	_	in.	of the	in the	HS.	EG MA		1	A	_	_	100	W IN	_	16.	ħ.	1/11 L/11 Condition
C12:1	1			100	***	14	131		H	216	0.00	1.01	0.10	141	6.01		17	601 607	114	811 818 838	8.H 801	136 131	111	681 688	100	VLCAD (HH) VLCAD
cu	į.	11		119		18	110		H	14	1.17	6.78	144	121	147		H H	10	110	117	141	684 184	101	164	18	VLCAD (HAR) VLCAD
CHE2	ŀ	11		182	114	117	19	811	i	0.00	8.12	0.17	117	11.47	819-8	**	21 H	638 638 638	636 607 511	110 110	110 110	tii	8-16 5-40	0.00 0.00 0.04	130	VLCAD (HH) VLCAD (HA)
CHAT			1	*	•••	149	1,17	***	"	636	134	1.00	279	134	637 - 0	47	111	18 18 14	9.65 E14	640 679 618	112 112	180	18	116 430 140	18	VLCAD PHILI VLCAD
CH	1	11		14	0.25	1.00	140	679	*	141	1.50	0.70	2.01	1.39	6.49 - 6	,,,	# ##	6.0 633	637 546 579	141	5.10 5.63 1.04	131	139	126	107	VLCAD (Hel) VLCAD CP12
CHI	1	1		12	110	182	1.81	7.88	Г	*11			100		14-7	н	1 2 2	110	7.46	# 1 H	11 82	28.86 19.14 7.61	20 M	8181 6181	## ## ##	CACT CFT3
CHE2	ŀ	11		114	.,,	0.00	0.04	***	,	634	249	***	131	1,88	830 - 0	**	1	610 121	1.6s 1.03	144	10	14)	107	100	\$71 339	CACT CFT2
C18:1	ŀ	14	1	179	ŧŧ	114	I.II	100	e	1.73	181	ì	1.86	531	111-	•	1.0	100	117	117	111	130	\$11 \$77	134	11a	CAET CFTE
CHI	ŀ	1	1	_			1.70	111	ш					+.00	100-1	*	1	122	125	117	318 288	149	840	139	43	CPTS
C16-1-OH C16-OH	1	10				108	111	816	ü	12	116	60	1.8 1.31		411		38 82	116 116	£18 £17	138	EH EH	£17 £74	116	130	16) 181	LCHAD/TEP LCHAD/TEP
C18:1-OH C18-OH						117	938 938	8.07 8.07				6.10 8.10		9.55 8.60	*#7 - 0		17	917 814	107	111	134	1.0	101	10	179	LCHADITEP

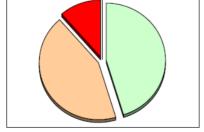

AC Ratios (21)


	ш	- 17		_	Rec	ion 4 -	Labora	tory	Qua	ity i	-	4000	-	00000000		700	ject (NBS	by N	SM	S)				
StateCab	匚	Min	nesota	6		MN					AC	YLC	ARN	TINE	RATIC	15									
Updated			30.0		11.5					orr po				CO II					100	e POL	TRUTT				714.00
631947	н	79,	10%		NA.	9941	Variet	N		MATE			111%	10%	ER .	M	1%	314	10%	39%	60%	78%	80%	10%	176
RATIO				*********			CO range			******		-		Ref No	lime!				-		-			-	Condition
100000		Anna		100		Towns.	1							2		.10	0.06	9.28	1.27	2.12	0.72	128	1.68	2.28	PA .
C2/C5	31	6.03	138	111	848	0.16	8.20	43	3.12	9.28	8.26	1.26	2.54	0.46	0.20	138	2.04	2.17	0.20	0.30	0.29	0.62	1.00	2.09	MARY STATE
1000000	ш	_						_	-	_		_	\perp	100		37	2.10	5.19	5.22	0.29	9.38	8.51	2.81	3.45	CMC
																81	216	1.68	2.00	2.53	6.13	7.18	112	13.87	PA.
C3/C16	177	0.26	141	200	120	181	2.00	45	1.94	210	2.84	141	434	1.79	2.00	120	1.36	1.26	1.56	234	5.51	2.81	1.31	18.63	MAN LAS
_	ш	_	_	_	_	_	_	<u> </u>	_	_	_	_				21	138	171	136	2.32	3.26	420	6.46	11.30	CBIC
	ш							1		1						141			8.041	0.013	0.021	0.091		1210	Brook -
C4C2	21	0.00	221	121	0.00	0.03	0.06	22	111	104	0.04	626	2.19	0.03	8.84	27	3.025	0.017	6:029 6:014	0.049 0.025	0.060	0.005		0.196	per-
260001	ш							1								4	2.001	0.054	0.014	2.05	6:047	8.101	-	1244	GAZ
	Н	_	-	-	-		-	\vdash	-	-	-	-	-	_		185	2.001	0.44	2.21	100	0.35	1.32	1.00	1.47	-
																20	140	249	9.87	2.84	1.15	141	1.79	2.44	SCAD SCH
C4/C3	30	6.04	8.87	2)2	0.26	0.46	8.50	-247	2.28	541	+ 46	2.86	121	0.40	0.44	28	0.10	0.20	0.26	0.48	1.34	3.88	143	38.10	
																	1.70	110	2.00	1.36	1.22	2.89	127	1.50	er.
				-								$\overline{}$				178	10.21	12.63	14.13	19.30	26.12	14.52	45 65	90.19	BOAD
C4/C8	12	120	1.76	121	1.00	14.01	14.00	- 11	2.64	12.00	17.46	20.07	74.65	14.01	15.00	72	8.93	18.62	15.14	19.22	32.19	\$1.79	49.73	11.63	ec-
																	12	9.9	10.8	124	21.6	23.9	45.7	93.5	let
	П								$\overline{}$		$\overline{}$					74	0.001	0.036	0.011	1.000	0.155	5.359	2.594	1,077	NA.
csce	11	0.000	1.000		0.010	0.020	0.03	,					0.07	0.02		81	0.018	0.617	6.010	0.004	0.033	0.000	0.411	1.608	SMBG.
race	**	*****	****	****	10.4	8.144	8.04	1 1	***		1.44	***		244	***	27	0.000	900.0	8:006	8.611	0.038	£ 128	6.365	4.562	0.63
	ш		_	_	_			_	_	_	_	_		_	_	1	9.000	0.001	8.001	8.862	0.024	6.021	0.027	2007	et.
								I								57	0.012		E:0X3	0.103	0.180		0.835	1.365	NA.
CSC2	-0	0.00	110	101	0.01	0.02	9.03	22	0.01	111	104	426	2.00	0.02	0.07	75	0.009		6.018		0.031	6.003	-	2.188	7800
2000																26	0.004	movemen	6.011	5413	0.049	4:153	2.509	1,870	0.00
_	\vdash	_	-	_	_			-	-	_	-	-					9.000	CONTRACT	8.001	0.000	0.022	0.040	-	0.043	()
																59	110	0.49	0.10	0.23	2.69	0.50	0.04	26.37	PVA.
CSC3	10	0.02	8.54	127	2.18	0.33	0.25	**	2.17	5.33	5.45	0.73	2.07	0.33	6.49	27	0.04	0.13	D.16	0.34	0.35	1.17	20.32	1.70	2953
																11	5.05	5.01	2.01	1.00	0.52	2.00	161	1.95	942

											_	ACY	LCA	SVIHIN	E RAT	TOS						4.1			PAGE:
Operation				PORG.				-	Dist	OFF PO				CO F	Awar .				-	-	200			_	200.00
40/18/07		79.	CHROLA!			-	1970	-			Perce		100	100	DE	-	-	-		Percent	50%	100	1	-	3.748
RATIO	-	-14	- 114	-	100	-	Consess.		100		-	1144	100	200		-	14	-	10.0	-	-	100	-	-	Condition
	$\overline{}$			$\overline{}$			Cit marge	_	$\overline{}$	$\overline{}$						100	44	*1	9.1	147	38.9	91.7	140.0	104.1	2000
	ш															20	16.9	26.0	221.6	54.8	134.1	227.9	387.1	216.9	MACE SHARE
	ш																42	13	6.0	14.7	12.8	19.6	18.8	16.7	te?
CEOWCE	12	2.01	4.11	126	4.56	8.00	10.0	12	210	110	10.00	14.40	16.61	9.09	12.00	10	nie	12.8	132	78.0	24.3	10.0	16.2	ato	l-ws
	ш															r	1.0	10.0	71.6	142	15.4	79.9	20.6	31.2	P14
	ш																28.0	20.0	24.6	243	33.8	11.8	190.5	2614	arcs:
	ш							_																	DROHBA
CSONCO	-	2.001		4.00	400	0.017	4.025	٠,				0.007	1.00	8,917	0.000	185	1413	8.408	0.013	8.242	8.165	6.216	Eath	4.271	1000
	ш		-	-	111		2000	_		-	-			-	1341	-12	_	9.635	9.Det	1200	9.681	1.152	1.404	2×36	SMCC (MMC)
															. 93	1622	9.01	2.02	9.00	8.71	0.28	1.20	2,97	181	MC10
CBC2		0.00	0.00	0.00	501	2.01	9.02	211	00/0	200	6.606	0.010	180	2.01	0.63	37	tin	581		121	0.01	821	8.82	2.31	MCAS PHO
	ш							_								-29	0.38	,921	2.21	121	0.02	1,01	210	1.29	nat .
	П			$\overline{}$												SAF	0.42	1.88	2.71	11.62	10.20	12.00	14.81	21-17	ecio:
CBC19	20	1.24	2.00	175	138	140	380	28	148	110	Lin	3.01	541	2.50	- 2.00	31	0.67	9.79	9.75	126	0.82	110	210	1.89	MCLO PHS
	ш			_				ш.								24	6.29	0.46	141	181	0.71	1.00	127	2.50	SAZ
CIRCICIO		2.14	5.45	148	1.91	3.61	7.00	17	3.96	3-30.	100	9-86	810	3.61	7.88	*	8.07	7.01	140	10.29	16.72	25.40	30.40	45.96	ma.
capocaow		2.00	1.74	1.26	540	140	0.00		240	1.00	140		210	4.79		146	0.60	2.34	131	121	6.12	10.33	18.21	21.96	541
CHUCKH					140	1.40	4,00			1.00		4.4				28	0.09	916	9.34	119	2.27	3.00	391	4,72	SAZ
CERCICA	211	107	1.07	141	5.60	2.00	4.00	21	140	100	a.bs	146	125		0.10	42	140	1.23	1.74	136	331	25.00	\$4.10	<max< td=""><td>Ser.</td></max<>	Ser.
CHECKS	211	4.07	127	140	1.40	110	1.50	21	***	1.00	2.74	1.46	8.74	1.30	1,22	28	931	510	2/10	121	0.42	130	2.54	7.85	SAZ
	17	100			226						5.00					42	cir	224	1.01	2.00	0.40	241	110	12.82	241
CRECICIN	10	1.00	101	100	100	100	225	"	0.04	***	***	0.10	0.34	8.63	. 0.00	24	t de	0.00	130	1.02	0.04	5.10	8.01	1.12	547
(0.000000000000000000000000000000000000		15/51		7.5	0.7	200	10000			200	100	150	100			17	1.62	110	1.00	1,91	2.22	138	1119	14.50	OLEAN PHILIP
C14 SCI21	19	249	2.54	1.68	241	678	5.40	16	148	140	A25	5.48	10.00	1.00	5.00	:79	120	1.88	110	1127	616	11.90	17.76	27.95	VI.CAR
W. 1880						2000	100							10.270	and the same	20	0.21	534	6.3Y	1.39	9.34	5.37	140	5.41	NCC42-PMS
CHANCIE	**	100	133	134	1.10	2.14	0.20	10	2.18	9.20	4.38	834	ts	8.14	- 9.21	115	0.08	2.21	1.27	631	0.48	971	230	1.73	NA CAS
CHOWCH	16	1.00	111	1111	112	4000	8.87	16	13e	107	6.10	120	11.29	9.24	0.40	-	212	2.10	16.10	2.76	0.27	1111	240	1.00	LEBASTING
	$\overline{}$	_						_	_	_				The same	-	47	240	211	180	127	1.58	1.04	470	4.10	cue
ATTACH CHICK		1.80	249	4.09	739	9.60	1.00		126	240	2.54	1.38	4.80			**	128	1.29	2.79	131	1.47	2.12	2.29		DIE ME
				-					_	_						.04	2.00	129	130	401	6.71	120	19.87	20.1	me
																12	216	2.54	2.91	281	3.42	146	140		DID MID
CBICHI+CHIS (L2	100		640	1.00	11.07	no	1.70	107	2.86	1.80	2.16	636	438		1000	1	0.00	241	0.00	5.01	0.96	1.00	140		EACT
				100		100000								131		12	0.0a	516	2.31	8.81	6.88	147	179		cers
CB0C16+C180-040							100	-	100	20.5	40.0	10.0	10.0	22.12	-	-		10.0	20.6	41.0	87.2	198.0	200.2	421.0	forme



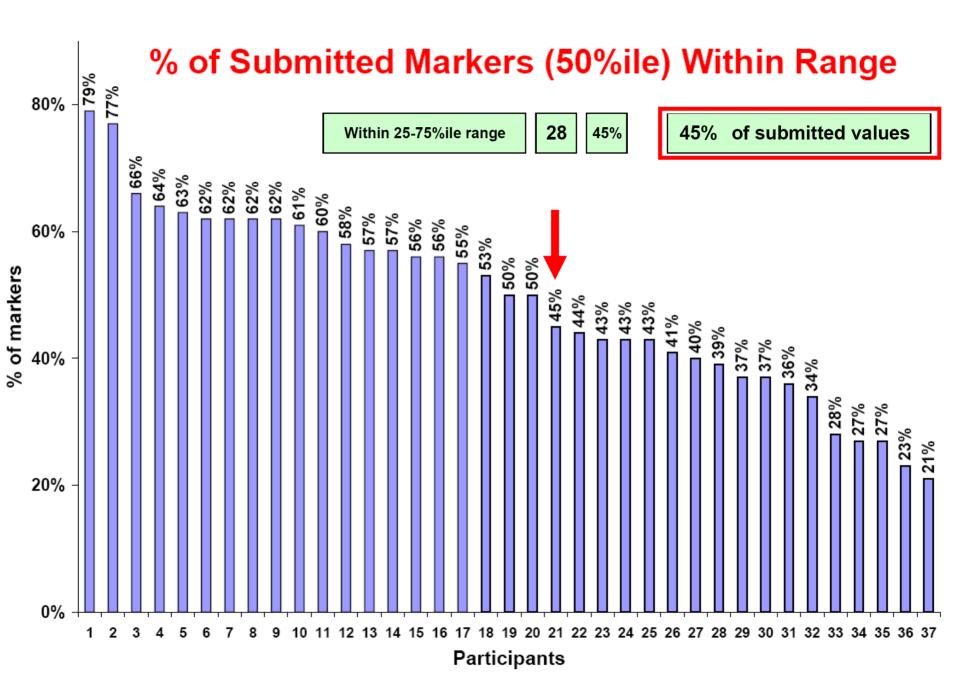
50%ile Comparison Tool



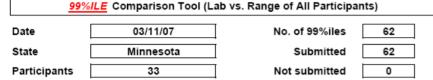
0%

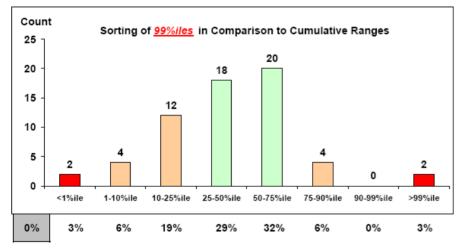
Version v.003

Not submitted


Last update 04/28/07

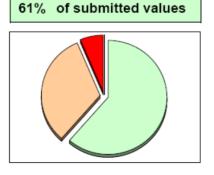
www.region4genetics.org


Range of values Minnesota 04/28/07 <1%ile 1-10%ile 10-25%ile 25-50%ile 50-75%ile 75-90%ile 90-99%ile 50% 134 593 24 382 62 99 158 32 35 LEU/ILE 102 83 123 171 102 21 23 35 21 12 36 53 37 53 45 77 36 32 71 ASA 14 0.02 0.28 0.06 PHE/ TYR 0.76 0.46 0.73 0.99 34 0.76 LEU/ PHE 1.95 1.44 2.23 4.01 26 1.95 LEU/ ALA 0.45 0.38 0.53 17 0.45 VAL/ PHE 1.30 1.74 2.61 16 1.30 MET/ PHE 0.41 0.28 0.41 0.52 23 0.41 21 6 CIT/ ARG 1.84 0.41 1.37 2.78 0.01 0.06 0.11 ASA/ ARG 36 37 18.04 2.02 0.92 1.78 2.71 2.02 0.23 0.15 0.24 35 0.23 18 C4-OH 0.15 0.06 0.15 0.24 0.15 0.01 0.02 0.13 34 0.02 37 0.12 0.12 0.07 0.12 37 0.08 0.15 0.23 0.16 34 0.06 0.06 0.03 0.06 0.21 0.07 0.04 0.07 0.18 37 0.07 C3 DC 26 0.03 0.03 0.06 0.11 0.03 0.03 0.06 0.11 35 0.05 0.05 35 0.08 0.05 0.09 0.27 0.08 C5 DC 0.01 0.05 36 25 25 24 0.03 0.13 0.03 0.08 0.03 0.08 0.13 0.08 C6 DC 0.03 0.06 0.12 0.03 C14:2 0.03 0.02 0.04 0.08 0.03 0.06 0.12 37 C14:1 0.14 0.29 0.14 34 37 C14 0.26 0.23 0.39 C16 1.92 2.50 2.49 2.49 22 37 28 C16:1-OH 0.03 C16-OH 0.01 0.01 0.03 0.08 0.01 0.10 0.19 0.37 0.13 0.87 1.17 1.56 36 1.04 C18: 0.52 0.80 0.97 0.71 C18 C18:1-OH 0.01 0.02 0.07 35 25 33 19 0.01 0.01 0.01 0.02 0.06 C18-OH 0.01 0.01 C3/ C2 0.08 0.07 0.30 0.08 0.57 C3/ C16 0.82 0.68 0.82 20 22 12 0.01 C4/ C2 0.01 0.06 0.01 C4/ C3 0.12 0.13 0.21 0.12 C4/ C8 1.82 3.21 3.31 3.31 4.93 0.00 0.01 C5/ C0 0.01 0.11 0.01 C5/ C2 0.005 0.00 0.01 0.03 16 0.005 C5/ C3 0.04 0.07 0.11 19 0.06 C5OH /C8 2.32 2.32 C5DC/ C5OH 0.20 0.20 0.26 11 0.20 20 C5DC/ C8 0.45 0.22 0.71 0.45 C5DC/C16 0.01 0.01 0.02 0.05 18 0.01 12 0.00 0.001 0.00 0.00 C8/ C2 C8/ C10 0.81 0.49 0.73 1.16 31 0.81 C14:1/C12:1 1.57 0.63 1.66 3.25 21 1.57 0.03 0.04 21 C14:1/ C16 0.06 0.08 C16OH/C16 0.01 0.01 0.01 0.04 19 0.01 0.38 0.38 0.93 1.30 8 C3DC/ C10 0.38 AC/ CIT 5.22 4.21 4.59 5.21 5.22 (H) FC/ 16+18 26.24 8.65 **23.05** 71.78


21%

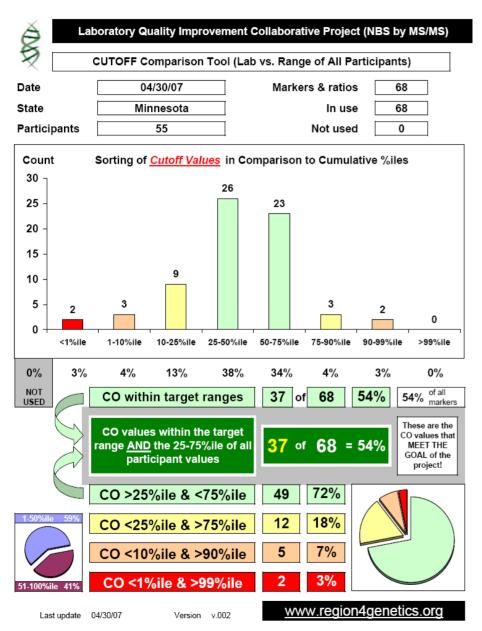
99%ile Comparison Tool

Laboratory Quality Improvement Collaborative Project (NBS by MS/MS)



Version v.002

Last update 01/28/07



	00%	Rang	je of v	/alues			N/1:		_		0	214411	0.7
MARKERS &	ILE		(NP)				Minn		•			<u>3/11/(</u>	• •
RATIOS		1%	50%	99%	Count	<1%ile	1-10%ile		25-50%ile	50-75%ile	75-90%ile	90-99%ile	>99%ile
GLY VAL	505 141	304 140	840 199	1979 313	22		141	505				+	
LEU/ ILE	237	142	247	340	31		141		237				
MET	52	27	48	70	31					52			
CIT	20	13	30	70	32			20					
PHE	101	63	97	121	33					101			
TYR ARG	190 19	112	201 30	268 86	33 29			19	190			+	
ASA	0.25	0.07	0.77	3.48	13		0.25	10				+	
PHE/ TYR	2.10	1.01	1.67	2.08	31								2.10
LEU/ PHE	4.32	2.07	4.18	6.80	23					4.32			
LEU/ ALA VAL/ PHE	1.17 2.43	0.81 2.45	0.98 3.17	1.69 3.94	14 12	2.43					1.17		
MET/ PHE	0.75	0.47	0.75	1.00	21	2.40				0.75		+	
CIT/ ARG	5.82	2.83	5.00	8.35	17					5.82			
ASA/ ARG	0.07	0.08	0.26	0.42	4	0.07							
CO	45.69	40.10	50.00	400.00	20			45.00				т —	
C3	5.19	2.92	4.66	106.38 7.28	32			45.69		5.19		+	
C4	0.76	0.44	0.75	1.44	31					0.76			
C4-OH	0.40	0.17	0.47	0.69	20				0.40				
C5:1	0.06	0.03	0.10	0.51	29				0.06				
C5 C5-OH	0.46	0.24	0.43	1.39 0.60	33					0.46		+	
C5-OF	0.40	0.20	0.38	0.60	30					0.40		+	
C8	0.22	0.12	0.20	0.45	33					0.22			
C3 DC	0.08	0.07	0.15	0.40	25		0.08						
C10:1	0.20	0.09	0.19	0.36	31					0.20			
C10 C5 DC	0.24	0.16	0.29	0.58	31 32			0.09	0.24				
C12:1	0.09	0.03	0.14	0.48	23			0.09			0.39		
C6 DC	0.09	0.04	0.16	0.39	23				0.09				
C14:2	0.11	0.05	0.14	0.30	24				0.11				
C14:1	0.43	0.17	0.37	1.14	33					0.43			
C14 C16	0.61 5.03	0.36 4.59	0.50 5.52	0.94 7.42	30 33				5.03	0.61		+	
010	5.00	4.00	0.02	1.42	- 55				5.00				
C16:1-OH	0.08	0.05	0.10	0.46	22		0.08						
C16-OH	0.05	0.05	0.10	0.28	32			0.05					
C18:2	0.59	0.38	0.56	1.53	26					0.59			
C18:1	2.05	1.77	2.37	3.69	32			2.05				Т	
C18	1.50	1.32	1.70	2.18	30			1.50					
C18:1-OH	0.05	0.03	0.08	0.27	31				0.05			Т	
C18-OH	0.03	0.03	0.08	0.39	23			0.03	0.05			+	
C3/ C2	0.18	0.13	0.16	0.26	28					0.18			
C3/ C16	2.87	1.41	2.03	3.38	16					2.87			
C4/ C2	0.03	0.02	0.03	0.10	20				0.03				
C4/ C3 C4/ C8	0.41 13.69	0.24 6.25	0.44 13.88	0.69 21.47	19 11				0.41 13.69			+	
C5/ C0	0.02	0.01	0.02	0.05	10				10.00		0.02		
C5/ C2	0.02	0.01	0.02	0.05	18					0.02			
C5/ C3	0.31	0.15	0.33	0.71	17				0.31				
C5OH /C8	8.92	4.01	9.09	15.51	11 9			0.69	8.92			+	
C5DC/ C5OH C5DC/ C8	0.69 1.49	0.68	1.36 2.00	2.58 4.75	20			0.63	1.49			+	
C5DC/C16	0.05	0.03	0.08	0.18	16			0.05					
C8/ C2	0.01	0.006	0.01	0.40	18				0.01				
C8/ C10	3.37	1.11	2.49	5.93	27				0.11	3.37		+	
C14:1/C12:1 C14:1/ C16	6.41 0.17	1.18 0.07	6.75 0.15	15.31 0.27	18				6.41		0.17	+	
C16OH/C16	0.03	0.03	0.06	0.25	15				0.03		0.17	1	
C3DC/ C10	1.51	1.25	3.41	4.93	8			1.51					
AC/ CIT	13.19		10.16	13.10	5								13.19
(H) FC/ 16+18	26.09	8.61	22.87	71.77	19					26.09			

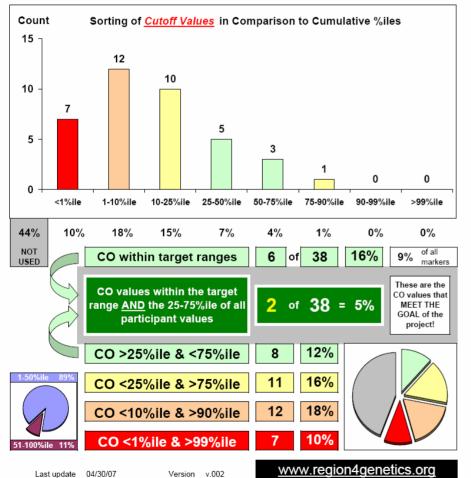
www.region4genetics.org

Total

Cutoff Comparison Tool

MARKERS &				1	Minn	esota	a		04	4/30/0	07
RATIOS	co	TARGET RANGE	Count	<1%ile	1-10%ile			50-75%ile			
GLY	700	500 - 700	31			700					
VAL	200	180 - 193	42			200					
LEU/ILE	300	248 - 300	52					300			
MET	60	55 - 100	51				60				
CIT	55	30 - 40	51				400	55			
PHE TYR	130 150	97 - 132 120 - 150	52 49		150		130				
ARG	150 50	30 - 69	43		150			50			
ASA	0.40	0.60 - 0.90	18			0.40		30			
PHE/ TYR	2.50	1.68 - 1.76	47			0.40		2.50			
LEU/ PHE	4.50	4.00 - 4.50	32				4.50	2.00			
LEU/ ALA	2.25	0.99 - 2.25	18							2.25	
VAL/ PHE	3.00	3.00 - 3.50	13					3.00			
MET/ PHE	1.50	0.75 - 1.47	27						1.50		
CIT/ ARG	6.00	4.84 - 6.82	19					6.00			
ASA/ ARG	0.10	0.07 - 0.12	4	0.10							
CD(L)	9.00	less than 11.08	50					9.00			
(H)C0	60.00	40 - 60	44				60.00				
C3	5.25	4.65 - 5.50	53				5.25				
C4	1.40	0.75 - 0.94 0.47 - 0.80	50 23					1.40			
C4-OH C5:1	0.75 0.25	0.47 - 0.80	47					0.75 0.25			
C5:1	0.23	0.43 - 0.60	52				0.50	0.23			
C5-OH	0.60	0.38 - 0.66	51				0.60				
C8	0.25	0.18 - 0.24	50				0.25				
C8	0.35	0.20 - 0.71	55					0.35			
C3 DC	0.35	0.16 - 0.42	36					0.35			
C10:1	0.30	0.10 - 0.15	50					0.30			
C10	0.30	0.25 - 0.30	48			0.30					
C5 DC	0.15	0.10 - 0.13	53				0.15				
C12:1	0.80	0.31 - 0.50	28							0.80	
C6 DC	0.10	0.10 - 0.12	34			0.10	0.45				
C14:2 C14:1	0.15	0.12 - 0.15	31 51				0.15				
C14:1	0.70	0.37 - 0.67 0.49 - 0.70	46				0.50	0.70			
(H)C16	7.00	5.44 - 7.48	51				7.00	0.70			
C16(L)	0.60	less than 1.50	23				7.00	0.60			
C16:1-OH	0.10	0.10 - 0.15	26		0.10						
C16-OH	0.10	0.10 - 0.15	52				0.10				
(H)C18:2	0.60	0.50 - 0.60	28				0.60				
C18:2(L)	0.03	less than 0.10	14				0.03				
(H)C18:1	3.00	2.37 - 2.50	48					3.00			
C18:1 (L)	0.30	less than 0.70	19				0.30				
(H)C18	2.00	1.50 - 1.60	39	<u> </u>		0.45	2.00				
C18(L)	0.15	less than 0.50	18			0.15					
C18:1-OH	0.07	0.07 - 0.10	47			0.07	0.07				
C18-OH C3/ C2	0.07	0.07 - 0.10 0.16 - 0.20	30 43				0.07	0.20			
C3/ C16	2.00	1.70 - 2.00	15				2.00	0.20			
C4/ C2	0.04	0.03 - 0.04	23				0.04				
C4/ C3	0.50	0.40 - 0.43	20				0.50				
C4/ C8	14.00	14.13 - 15.00	11				14.00				
C5/ C0	0.03	0.02 - 0.04	9				0.03				
C5/ C2	0.03	0.02 - 0.03	22			0.03					
C5/ C3	0.25	0.33 - 0.49	15		0.25						
C5OH /C8	10.00	9.09 - 12.00	15					10.00			
C5DC/ C5OH	0.90	0.70 - 0.94	8	0.90							
C5DC/ C8	1.50	1.20 - 1.24	21				1.50				
C5DC/C16	0.05	0.03 - 0.05	16				0.05	0.02			
C8/ C2 C8/ C10	0.02 3.00	0.01 - 0.03 2.50 - 3.00	21 38					3.00			
C14:1/C12:1	5.40	4.00 - 5.00	16					5.40			
C14:1/C12:1	0.20	0.15 - 0.21	18					0.20			
C160H/C16	0.20	0.06 - 0.10	16				0.07	U.EU			
C3DC/ C10	5.00	3.69 - 7.11	7						5.00		
AC/ CIT	3.00	less than 3.00	5						3.00		
(H) FC/ 16+18	50.00	23 - 30	24					50.00			
CD/C16+C18(L)	1.70	1.91 3.22	17			1.70					
Within	37	Not used	0	2	3	9	26	23	3	2	0
***************************************	31	ivot used	- 0				20	20		-	

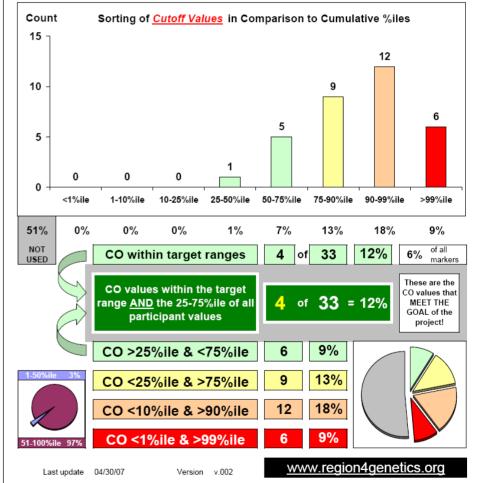
Outside

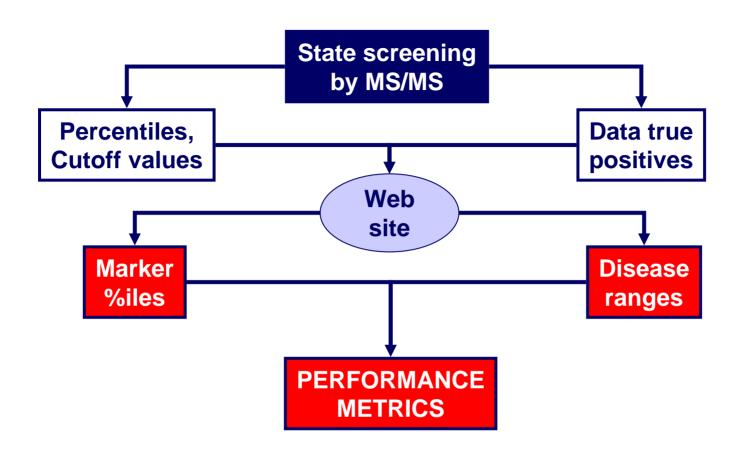


Š

Laboratory Quality Improvement Collaborative Project (NBS by MS/MS)

CUTOFF Comparison Tool (Lab vs. Range of All Participants)


Laboratory Quality Improvement Collaborative Project (NBS by MS/MS)


CUTOFF Comparison Tool (Lab vs. Range of All Participants)

 Date
 04/30/07
 Markers & ratios
 68

 State
 In use
 33

 Participants
 55
 Not used
 35

Making the Case for Objective Performance Metrics in Newborn Screening by Tandem Mass Spectrometry

DETECTION RATE

Piero Rinaldo,* Saba Zafari, Silvia Tortorelli, and Dietrich Mater

Biochemical Genetics Laboratory, Division of Laboratory Genetics, Department of Laboratory Medicine a

Mayo Clinic College of Medicine, Rochester, Minnesota

The detection rate of a newborn screening program is expressed as the

The expansion of newborn screening programs to include multiplex testing by tandem mass spectrometry requires understanding and dose monitoring of performance metrics. This is not done consistently because of lack of defined targets, and interlaboratory comparison is almost nonexistent. Between July 2004 and April 2006 (N = 176, 185 cases), the overall performance metrics of the Minnesota program, limited to MS/MS testing, were as follows: detection rate 1:1,816, positive predictive value 37% (54% in 2006 till date), and false positive rate 0.09%. The repeat rate and the proportion of cases with abnormal findings actually been reported are new metrics proposed here as an objective mean to express the overall noise in a program, where noise is defined as the total number of abnormal results obtained using a given set of cut-off values. On the basis of our experience, we propose the following targets as evidence of adequate analytical and postanalytical performance: detection rate 1:3,000 or higher, positive predictive value >20%, and false positive rate <0.3%. e2006 Wiley-Liss, Inc. MRDD Research Reviews 2006;12:255–261.

Key Words: tandem mass spectrometry; detection rate; positive predictive value; false positive rate

Of all cooperative enterprises, public health is the most important and gives the greatest returns

(William J. Mayo, MD)

andem mass spectrometry (MS/MS) allows for the rapid analysis of individual compounds in complex mixtures, and provides an excellent analytical methodology for newborn screening [Chace et al., 2003; Rinaldo et al., 2004; Chace and Kalas, 2005]. The use of a multiplex platform of this nature, however, is challenging and requires not only analytical, but also significant postanalytical skills for proper interpretation of complex metabolite profiles, some of which could involve as many as 15 different markers and ratios in the same profile (Fig. 1). Variability is also significant at the quantitative level, where the concentration of informative findings could span over four orders of magnitude (0.1 to

The expansion of newborn screening programs to include multiplex testing by tandem mass spectrometry requires understanding and close monitoring of performance metrics. This is not done consistently because of lack of defined targets, and interlaboratory comparison is almost nonexistent. Between July 2004 and April 2006 (N = 176,185cases), the overall performance metrics of the Minnesota program, limited to MS/MS testing, were as follows: detection rate 1:1,816, positive predictive value 37% (54% in 2006 till date), and false positive rate 0.09%. The repeat rate and the proportion of cases with abnormal findings actually been reported are new metrics proposed here as an objective mean to express the overall noise in a program, where noise is defined as the total number of abnormal results obtained using a given set of cut-off values. On the basis of our experience, we propose the following targets as evidence of adequate analytical and postanalytical performance: detection rate 1:3,000 or higher, positive predictive value >20%, and false positive rate <0.3%. © 2006 Wiley-Liss, Inc. MRDD Research Reviews 2006;12:255-261.

*Correspondence to: Piero Rinaldo, Biochemical Genetics La Department of Laboratory Medicine and Pathology, 200 First Minnesota 55905. E-mail: rinaldo@mayo.edu pathology.

Received 10 October 2006; Accepted 11 October 2006

Published online in Wiley InterScience (www.interscience.wiley.com).

DOI: 10.1002/mrdd.20130

Laboratory Quality Improvement Collaborative Project (NBS by MS/MS)

PERFORMANCE METRICS

STATE/LAB	
PERIOD	(mm/yr to mm/yr; for example, 01/05 - 12/06)
VOLUME	(no.of newborns tested, should match the "population" total listed below)

0

	SIA	103
	Affected	Not affected
POSITIVE		
NEGATIVE		

0

CTATHE

TOTAL	l
0	
0	ĺ
	1

www.region4genetics/org

Α	В	
С	D	

TP	FP
FN	TN

SENSITIVITY	#DIV/0!	A/(A+C)	TP/(TP+FN)
SPECIFICITY	#DIV/0!	D/(B+D)	TN/(FP+TN)
PPV	#DIV/0!	A/(A+B)	TP/(TP+FP)
NPV	#DIV/0!	D/(C+D)	TN/(FN+TN)

Pos detection rate	1:	#DIV/0!	(Prevalence)

TOTAL

TEST

	//BD //AI	ED/D 1 (:
False positive rate	#DIV/0!	FP/Population

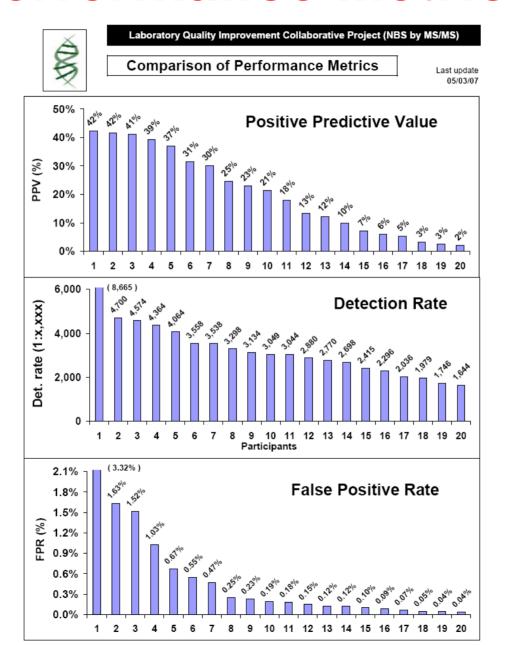
Instructions

Population

Only colored cells are accessible

Enter state, period, and volume

Enter the volumes of the 4 groups (TP, FP, FN, TN)


Save as (state) Performance metrics (date)

Example: MN Performance metrics 01-11-07

Post file on the website (your state folder)

Updated 01/11/07

Performance Metrics

Sample Exchange

Stephanie Mayfield, MD Kentucky

Targets of the Program

- 1. 100% correlation of TP cases with threshold of 95%
- 2. 90% of primary analyte(s) values within20% of submitters corresponding values
- 3. 100% active participation from all states within Region 4 in the exchange process
- 4. Increase participation from at least three states outside of Region 4

100% Correlation of TP Cases (threshold of 95%)

- As of May 3, 2007
 - 138 cases
 - 119 completed, 19 pending
 - 97% correlation
- 3 discrepancies
 - VLCAD
 - GAI
 - Maternal CUD

Training Courses

REGIONAL COLLABORATIVE PROJECT - PRIORITY 1

TRAINING PROGRAM IN NEWBORN SCREENING BY MS/MS

Biochemical Genetics Laboratory, Mayo Clinic College of Medicine - Rochester (MN), June 25-29, 2007

BGL Personnel		Title	
Piero Rinaldo, MD, PhD Project coordinator, lab director			or, lab director
Dietrich Matern, MD Lab director			
Slivia To	Slivia Tortorelli, MD, PhD Lab director		
Dimitar G	Dimitar Gavrilov, MD, PhD Lab director		
James Lim, PhD F		Fellow	
Amy Barthel		MS/MS supervis	or
Mark Magera		Development co	ordinator
	Practical		Presentation

Participants		State	
Bonifa	Bonifacio Dy		rida
Erin S	Erin Strovel		/land
Tanya McCallister		Oklahoma	
Alfredo	Chardon	Puerto Rico	
Shelly	Lawson	South Carolina	
Robin Porter		South Carolina	
Christine McKeever		Tennessee	
	Flex time		Other

TIME	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
8:00 8:30	Overview of program, flex time planning, tour			REVIEW of daily results (participants alone)	Pediatrics Grand Rounds (NBS related)
9:00 9:30 10:00	Observation of PRE- ANALYTICAL AND ANALYTICAL processing	REVIEW of daily results and REPORTING	REVIEW of daily results and REPORTING		REVIEW of daily results
10:30 11:00	(including CAH)		REVIEW of daily results and REPORTING (including CAH)	(participants are the PRIMARY REVIEWERS)	
11:30 12:00	analysis and AA/AC profile interpretation	Review 2nd tier test results (CAH, MMA/HCY,			and REPORTING
12:30 13:00		BCAA)			BGL Case conference
13:30	Break (lunch)	Break (lunch)	MN NBS conference call	Break (lunch)	Break (lunch)
14:00	Examples of profile	Overview of databases	Discussion of participants'	FLEX TIME, topic to be	Dieak (lulicii)
14:30 15:00 15:30	interpretation and testing algorithms		panels, cutoffs, %iles, and performance metrics	chosen by participants (options listed below)	FLEX TIME
16:00					
16:30	REVIEW of daily results F	REVIEW of daily results	REVIEW of daily results and REPORTING	REVIEW of daily results and REPORTING	REVIEW of daily results and REPORTING
17:00 17:30	and REPORTING	and REPORTING	and KEPOKTING		
18:00					
	FLEX TIME	2nd tier tests (sample prep)	2nd tier tests (analytical)	Confirmatory testing	TP cases review
	OPTIONS	Review of participants' own data,	cases (if requested)	MS/MS troubleshooting	Tools customization
	OFTIONS	MS/MS calibration, tuning	QC/QA process & procedures	Quiet time (at last)	Shopping

Collaborative Project

(The sequel: 2007-2012)

Project Objectives (2007)

- Development and implementation in screening practice of clinically validated cut-off values and postanalytical tools
- Training course at Mayo in small groups
- Development of customized software to manage data collection, analysis, and reporting of NBS data
- Collection, compilation and monitoring of performance metrics, with definition of targets of acceptable performance
- Monthly conference calls and bi-annual face-to-face meetings
- Continuing clinical validation of 2nd tier tests
- Round robin sample exchange

Project Objectives (2007)

- Development and implementation in screening practice of clinically validated cut-off values and postanalytical tools
- Training course at Mayo in small groups
- Development of customized software to manage data collection, analysis, and reporting of NBS data
- Collection, compilation and monitoring of performance metrics, with definition of targets of acceptable performance
- Monthly conference calls and bi-annual face-to-face meetings
- Continuing clinical validation of 2nd tier tests
- Round robin sample exchange

Operating Principles

- Web-based access, password protected, large (100-200) number of total users with the expectation of multiple simultaneous log-ins
- <u>Peripheral data submission</u> (participants enter own data, not done centrally)
- Automation of administrative functions (e-mail reminders, monthly posting of general updates)
- On demand, user-driven production of project tools (score cards, plots)
- Easy generation of customize reports (<u>comparison</u> tools of own data vs. cumulative data)
- Flexibility to add new conditions and markers (with potential applicability beyond MS/MS panel), and to query the database to generate <u>novel reports</u>

Of all cooperative enterprises, public health is the most important and gives the greatest return

Charles J. Mayo, MD