Evidence Review Workgroup

Advisory Committee on Heritable Disorders in Newborns and Children Report February 2009

Ellen A. Lipstein, MD MGH Center for Child and Adolescent Health Policy Harvard Pediatric Health Services Research Fellowship

Current Progress and Activities

SCID

– Final report submitted—January 2009– Discussion Today

Krabbe Disease – Review in process

SCID Report

Key authors:

Ellen Lipstein, MD
Alix Knapp, MS

Program director:

James M. Perrin, MD

• Staff:

- Marsha Browning, MD, MPH, MMSc
- Alex R. Kemper, MD, MPH, MS
- Nancy Green, MD
- Lisa Prosser, PhD
- Denise Queally, JD
- Jennifer Delahaye, BA
- Sienna Vorono, BA

Severe Combined Immunodeficiency (SCID)

- Group of disorders characterized by absence of both humoral and cellular immunity due to defects in T cell production and function.
- May also have defects in B-lymphocytes and/or NK-cells.
- Mutations in at least 15 genes lead to SCID.
- Infants with SCID develop severe infections, as protection from maternal antibodies wanes.

Rationale for Review

- Without disease-specific treatment SCID leads to death in early childhood.
- Earlier treatment may decrease mortality and morbidity associated with SCID and its treatment.
- Methods to screen infants for SCID, most commonly using quantitative PCR for Tcell receptor excision circles (TREC), have been developed.

Materials Included in Final Report

- Detailed methods
- Summarization of the evidence
- Tables highlighting key data from abstracted articles
- Materials provided to interviewees
- Conflict of interest form
- Bibliography of all identified articles

Methods of Review

- Systematic literature review, in order to summarize the evidence available from published studies
- Assessment of critical unpublished data from key investigators

Specific Topics Reviewed

- Incidence/prevalence
- Natural history
- Testing
 - Screening
 - Diagnostic
- Treatment
- Critical information still needed

Systematic Review

- January 1988- October 2008: Medline, OVID In-Process and Other Non-Indexed Citations database
 - English language only
 - Human studies only
 - Excluded: non-human data, reviews, editorials or other opinion pieces, case-series of <4 patients, studies containing only adult subjects, studies not addressing at least one of the key questions
- Also reviewed references from nomination form and bibliography of review papers
- 725 abstracts selected for preliminary review
- 60 articles selected for review and abstraction

Papers Meeting Review Criteria

Study Design	Number of papers
Experimental intervention	0
Cohort study	11
Case-control study	8
Case series total	38
Sample size ≤ 10	11
Sample size 11 to 50	18
Sample size ≥ 51	9
Economic Evaluation	1
Other design	2
Total	60

Quality Assessment Methods Used

- By Study Design
 - Compare within, rather than between, study design categories
- By Study Goal
 - Natural history, Treatment, Screening test, Economic evaluations
 - Example: Sensitivity and specificity of screening
 - Data obtained from screening program in U.S. population or similar
 - Data from systematic studies other than whole population screening
 - Estimated from known biochemistry of the condition

Unpublished Data

- Contacted experts identified through literature review, discussion within workgroup and recommendation by other experts
- Included experts from varying SCID domains
 - Example: screening, treatment, advocacy, etc.

Experts Contacted

- Mei Baker*
- Barbara Ballard*
- Francisco Bonilla*
- Marcia Boyle*
- Rebecca Buckley*
- Anne Comeau*
- Lisa Filipovich
- Alain Fischer
- Alan Knutsen
- Ronald Laessig*

- Edward McCabe*
- Sean McGhee*
- Vicki Modell*
- Luigi Notarangelo*
- Hans Ochs
- Sung-Yun Pai*
- Ken Pass*
- Jennifer Puck*
- Robert Vogt*

Quality Assessment: Natural History

Genotype/Phenotype Correlation	12
I. Data from retrospective screening studies in U.S. or similar population.	0
II. Data from systematic studies other than whole population screening.	5
III. Estimated from the known clinical features of the condition as described for individual cases or short series.	7
Incidence (cases per 100,000), average within the U.S.	4
Incidence (cases per 100,000), average within the U.S.I. Data obtained from whole-population screening or comprehensive national surveys of clinically detected cases.	4 1
I. Data obtained from whole-population screening or	4 1 2
 I. Data obtained from whole-population screening or comprehensive national surveys of clinically detected cases. II. As in I, but more limited in geographical coverage or 	1

Adapted from Pandor et al. 2004, Pollitt et al. 1997

Incidence

 Chan and Puck, 2005 - 1:105,000 live births Extrapolated from XSCID samples sent to single lab Stephan et al., 1993 - 1:100,000 live births 5 years of referrals to specialized units in France Jones et al., 1991 - 52/100,000 births in Navajo families Death records

Natural History

- Most children are diagnosed after recurrent infections
- Timing of first opportunistic infection may vary by SCID subtype
- Without specific treatment for immunodeficiency, children with SCID die from infection in early childhood.
- Known phenotype/genotype differences do not affect main findings related to infection and death

Quality Assessment: Screening Test Characteristics

Overall sensitivity and specificity of screening & false-positive rate	3
I. Data obtained from screening programs in U.S. population or similar.	0
II. Data from systematic studies other than from whole population screening.	3
III. Estimated from the known biochemistry of the condition.	0
Repeat specimen rate	0
I. Data obtained from screening programs in U.S. population or similar.	0
II. Data from systematic studies other than whole population screening.	0
III. Estimated from the known biochemistry of the condition.	0
Second-tier testing	1
I. Data obtained from screening programs in US population or similar.	0
II. Data from systematic studies other than whole population screening.	1
III. Estimated from the known biochemistry of the condition.	0

Adapted from Pandor et al. 2004, Pollitt et al. 1997

Proposed Screening Methods

- Whole blood
 - Lymphocyte counts
- Dried blood spot
 - Quantitative polymerase chain reaction
 - Enzyme-linked immunosorbent assay (ELISA)

Screening Test Literature

Study	Population	Screening Methods	Accuracy of Screen; Sens/Spec.
Hennewig et al. 2007	36 children with rotavirus gastroenteritis: 18 with SCID, 18 without SCID.	 SCID children were more likely to have: Low white blood cell count, eosinophilia and lymphopenia 	^Sensitivity: 55.6% to 94.4% ^Specificity: 44.4% to 100%.
Chan, Puck 2005	23 children with SCID 2 with non-SCID immunodef. 242 anonymized newborn screening cards.	 DNA amplification of TREC from dried blood spot. No detectable levels of TREC among SCID cases Children with non-SCID immunodef. had TREC. Several presumed false-positives in which beta- actin could be amplified but TREC could not. 	*False positive rate: 1.5% from routine nurseries; 5% from special-care nurseries. ^Sensitivity: 84%-100% ^Specificity: 97-97.1%
McGhee et al. 2005	13 children with SCID 183 anonymized dried blood spots	•Discuss 2-tiered screening with IL-7 measured first and TREC measured in those with elevated IL-7	*Combined specificity of 100% (confidence interval, 97-100%) *Combined sensitivity of at least 85%
Hague et al. 1994	45 children with SCID 90 children without SCID.	 Used first available lymphocyte count. Children with SCID had significantly lower levels of lymphocytes which persisted 	*False-positive rate: 8% ^Sensitivity: 86.3%, and ^Specificity: 94.4%

Wisconsin Screening Experience

Number Screened:	70,397 (01/01/2008-12/31/2008)
Premature (<37 weeks)	6487
Full term	63910
•Abnormal Results:	32 (0.045%)
Premature (<37 weeks)	20 (0.308%)
Full term	12 (0.019%)
 Inconclusive Results 	118 (0.168%)
Premature (<37 weeks)	97 (1.50%)
Full term	21 (0.033%)

Courtesy of Dr. Mei Baker, presented at the Newborn Screening Symposium, November 2008, updated January 2009

Wisconsin Screening Experience

Abnormal Results:	Inconclusive Results:
 -Full Term 1 DiGeorge Syndrome 1 Downs Syndrome with sepsis at birth 1 Idiopathic T-cell lymphopenia 1 Neutrophil migration defect with RAC2 mutation 2 normal Flow Cytometry results 4 normal results on repeated newborn screening 1 pending case 1 expired case 	 -Full Term 1 Abnormal results on repeated NBS and abnormal Flow Cytometry (Idiopathic T-cell lymphopenia) 17 normal results on repeated newborn screening 1 pending cases 2 expired cases
 -Premature 1 DiGeorge Syndrome (36 weeks) 1 chylous effusions (chylothorax and chylous ascites) 3 normal Flow Cytometry results 9 normal results on repeated newborn screening 4 pending cases 2 expired cases 	 -Premature 1 DiGeorge Syndrome (36 weeks) 1 Abnormal results on repeated NBS and abnormal Flow Cytometry (gastrochisis) 72 normal results on repeated newborn screening 2 pending cases 21 expired cases

Courtesy of Dr. Mei Baker, presented at the Newborn Screening Symposium, November 2008, updated January 2009

Treatment Methods

- Allogeneic hematopoietic stem cell transplant (HSCT)
 - Sources include bone marrow, umbilical cord blood, peripheral blood
- Enzyme replacement therapy (ERT)
 ADA-deficient SCID
- Gene therapy

- X-linked or ADA-deficient SCID

Quality Assessment: Treatment

Effectiveness of treatment	47
I. Well-designed RCTs.	0
II-1. Well-designed controlled trials with pseudorandomization or no randomization.	0
II-2. Well-designed cohort studies:	8
A. prospective with concurrent controls	0
B. prospective with historical control	1
C. retrospective with concurrent controls.	7
II-3. Well-designed case-control (retrospective) studies.	0
III. Large differences from comparisons between times and/or places with and without intervention	4
IV. Opinions of respected authorities based on clinical experience, descriptive studies and reports of expert committees.	35

Adapted from Pandor et al. 2004, Pollitt et al. 1997

Treatment Evidence: HSCT Efficacy Large case-series

Study	Population	Significant Findings
Buckley et al. 1999	89 children total; 22 less than 3.5	 72 (81%) alive 3 months-16.5 years post-transplant, with a median follow up of 5.6 years. 65 survived greater than 1 year, 38 greater than 5 years and 21 greater than 10 years. Poor B cell function with 45 kids requiring IVIG. NK-cell activity low in γc-chain deficiency and JAK3 deficiency, normal in other SCID subtypes.
van Leeuwen et al. 1994 *	31 patients total; 1-94 months old at BMT.	 HLA-identical related 6/10 (60% survived) HLA haplo-identical related: 9/19 (47% survived). HLA-matched unrelated: 0/2 (0% survived). Major causes of death were graft and respiratory failure. All who died of respiratory failure had a lung infection prior to transplant.
Stephan et al. 1993*	117 patients withSCID (from 1970to 1992);85 children weretreated with BMT.	 HLA-identical transplant from a related donor 21/25 (84%) survived. Pheno-identical transplant (HLA genotypically haplo-identical) from related donor 2/5 (40%) survived. HLA haplo-identical transplant without T-cell depletion 0/5 (0%) survived. T-cell depleted haplo-identical transplant 28/50 (56%) survived.

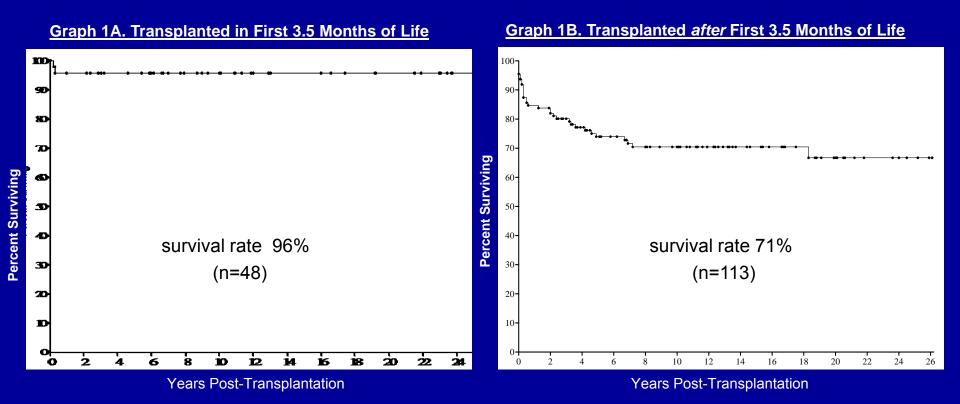
*May contain some of the same patients.

Treatment Evidence: Long term survival following HSCT

Study	Population	Significant Findings	<u>Evidence</u>
Friedrich, Honig & Muller 2007 Cohort study	32 children total; all at least 10 years out from transplant.	 Most patients had normal and stable T-cell numbers and functions. 3 patients' had decreasing T-cell numbers. 4 patients' had decreasing PHA responses HLA-haploidentical with no conditioning had lower levels of naïve CD4+ cells and impaired B cell functioning. 	IV
Antoine et al. 2003 * Cohort study	475 patients (total of 566 transplants); patients from 37 European centers between 1968 and 1999.	 Three-year survival with sustained engraftment was 77% for HLA-identical and 54% for HLA-non-identical transplants. Survival has improved over time for both HLA-identical and HLA-non-identical transplant recipients. SCID phenotype was not associated with difference in survival 	I II-2 C
Haddad et al. 1998 Case series	193 patients total; from 18 European centers between 1982 and 1993.	 116 alive with evidence of engraftment 5 months after BMT; 24 later died (20%). T-cell function improved during the 2 years after BMT and continued to be better than B-cell function. Poor outcomes associated with: absence of T-cell reconstitution, presence of chronic GVHD 6 months after transplant, B- SCID (multivariate analysis) At last follow up (median, 6 years after transplant), 93% of survivors had normal T-cell function. 	e
Fischer et al. 1990 * Case series	183 patients total; from 15 European centers between 1968 and 1989.	 Survival significantly better for HLA-identical (76% survival) than HLA-non identical transplants (50% survival). Lung infection before HSCT and absence of a protective environment significantly affected outcome (multivariate analysis). A total of 27% had acute GVHD of grade II or higher and 25% developed chronic GVHD. 97% survival in those treated since 1983. 	- IV

*A subset of patients in Fischer et al. 1990 are also included in Antoine et al. 2003

Treatment Evidence: HSCT in neonates/infants


Quality of

Study	Population	Significant Findings	Evidence
Myers et al. 2002* Cohort study	21 children transplanted prior to 28 days of life; 96 children transplanted at a median age of 190 days	 20/21 (95%) early treatment children survived. 71/96 (74%) late treatment children survived. Early transplantation did not have an affect on B-cell function. 	II-2 C
Kane et al. 2001 case-series	13 children total; transplanted between 7 and 68 days old.	 All patients alive and well 0.5-11.5 years after transplant (median 3 years). 2 children developed chronic GVHD. 3 children required more than one transplant. All children achieved neutrophil engraftment and normal levels of IgA;7 have normal IgG; 12 have normal IgM. 10/12 have normal neuro-development; 1/12 has trouble with communication and interactive skills, and 1/12 has motor delay. 	IV
Buckley et al. 1999* Case series	89 children total; 22 less than 3.5 months old at transplant.	 21/22 (95%) infants alive at follow-up 51/67 (76%) who received transplants at 3.5 months or older survived to follow-up Median follow-up 5.6 years (range 3 months -16.5 years) 	IV

* Potential patient overlap of Myers et al. 2002, Buckley et al. 1999

Early Treatment for SCID

• 161 SCID infants transplanted over the past 26 years, overall survival rate of 125/161 (78%)

The Kaplan-Meier graphs from Dr. Buckley (with permission)

Treatment for SCID: Availability

- From SCID expert interviews:
 - An informal survey an NIAID/Rare Diseases workshop identified 34 centers in the United States and Canada that currently perform HSCT for SCID
 - Others report 15 major and 34 minor centers in the U.S. and Canada currently performing stem cell transplantation for SCID.

Evidence of Harms from Screening, Diagnosis and Treatment

- Screening
 - No studies identified
- Diagnosis
 - No studies identified
- Treatment (2 studies)
 - 8/41 children undergoing HSCT developed autoimmune hemolytic anemia; 3 died from complications
 - 4 children (of the 9/10 who had successful gene therapy) developed leukemia between 30 and 68 months after gene therapy; 3/4 were successfully treated with chemotherapy

Evidence of Cost-Effectivenss

- McGhee et al, studied a deterministic decision-tree model
 - Compared universal and targeted screening approaches
 - Health care system perspective
 - Found an 86% likelihood of screening being cost-effective at a threshold of \$100,000 per QALY gained
- Discussion with experts suggests treatment costs may have been underestimated

Key Findings

• Key findings:

- SCID incidence at least 1/100,000 newborns in the US
- Population-based screening trials are underway
- No population-based screening trial has been completed
- Without curative treatment, newborns develop severe infections leading to early death
- Treatment, most commonly with hematopoietic stem cell transplant, decreases morbidity and mortality associated with SCID
- Some evidence supports the benefit of pre- or early symptomatic treatment compared to later treatment

Critical Evidence Needed: Screening

- No systematic method of case-finding exists.
- Pilot screening programs should serve to systematically identify cases in their screened populations.
- The new consortium of treatment centers (USIDNET) may facilitate systematic casefinding.

Critical Evidence Needed: Screening

Accuracy of Screening

- Current data are limited.
- Early data from Wisconsin suggests a low false-positive rate.
- No data exist regarding the accuracy of other screening methods in population-based protocols.

Feasibility of Screening

- Wisconsin's experience suggests screening is feasible.
- Massachusetts has just initiated a screening pilot for SCID.
- No data exist regarding the ability of other newborn screening programs to offer SCID screening

Acceptability of Screening

No data describe consumer or physician acceptance of newborn screening for SCID

Critical Evidence Needed: Treatment

- Value of early treatment
 - Current evidence is limited

Cost-effectiveness (of screening and treatment)

 Cost-effectiveness analyses utilizing measured costs and utilities, as well as applicable sensitivity analyses, are needed

Adequacy of available treatment centers

- No current data address variation in treatment success among centers.
- The number of centers in the United States and their capacity to provide treatment for SCID is unclear.
- Future data from USIDNET and CIBMTR may provide evidence for treatment availability and variation

Thank you