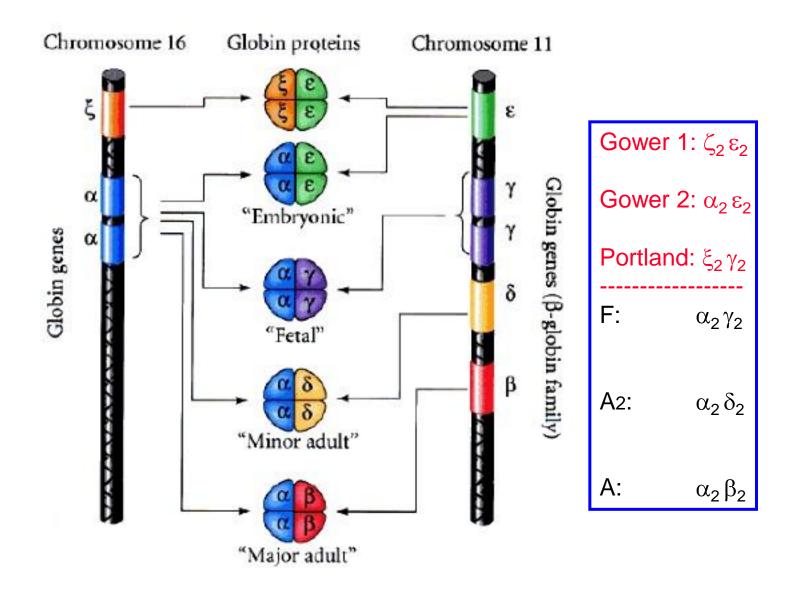
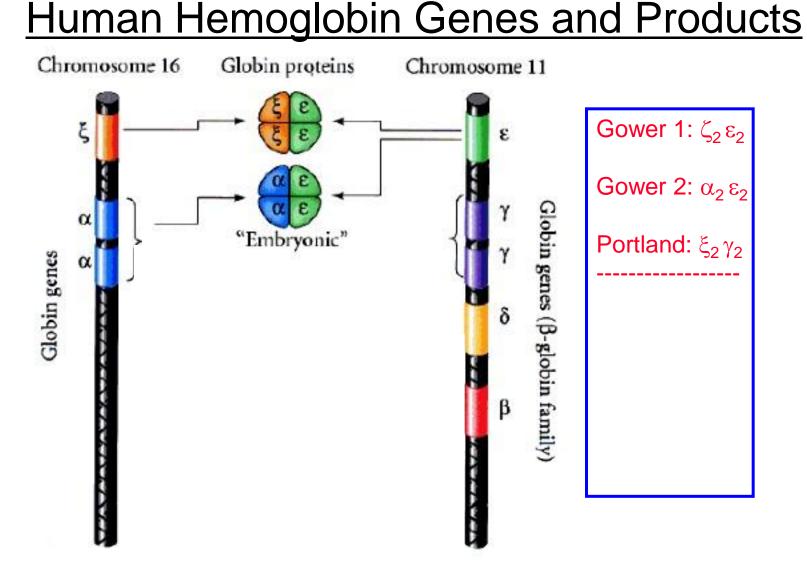
Nomination of Alpha Thalassemia: Hemoglobin H Disease

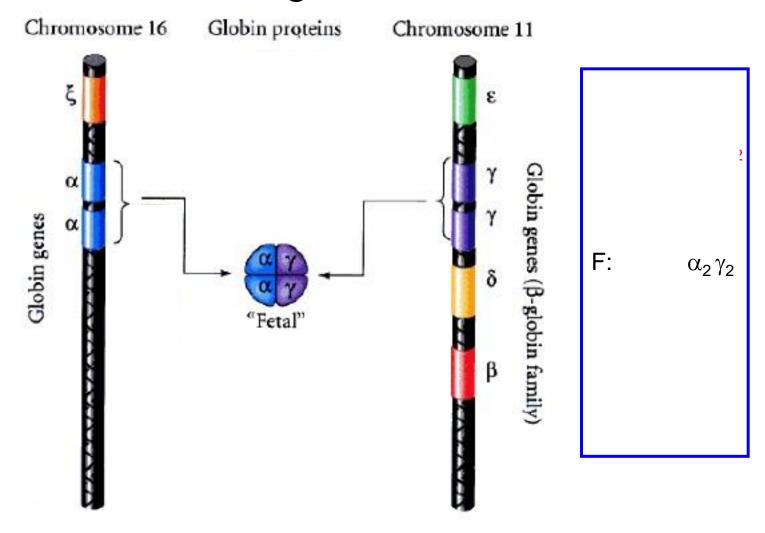

<u>Kwaku Ohene-Frempong, MD</u> University of Pennsylvania The Children's Hospital of Philadelphia

Nomination of Alpha Thalassemia: Hemoglobin H Disease

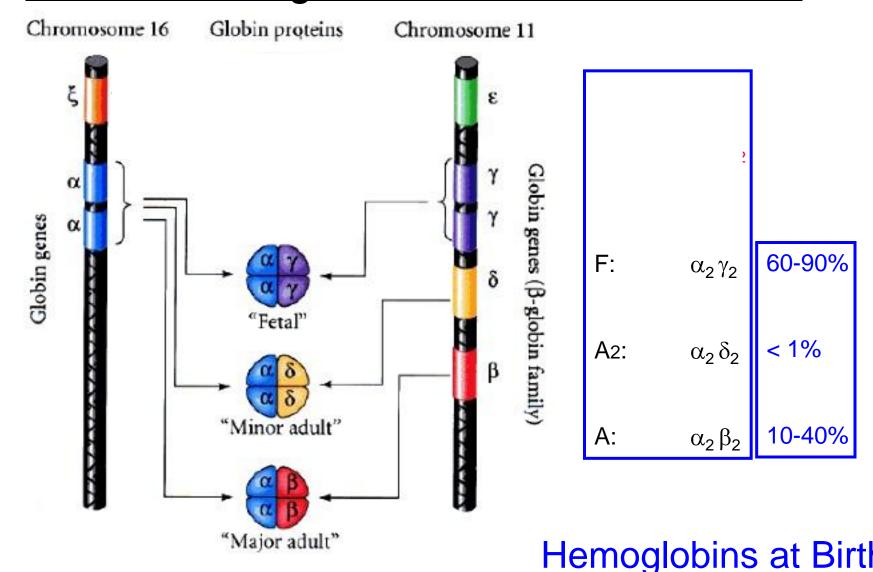

- Name of Proponent: Elliott Vichinsky, MD
- Organization:
- Date:
- Condition:
- Type of Disorder:
- Screening Method:
- Treatment strategy:

- Children's Hospital Oakland
- 4/28/09
- Alpha-thalassemia / Hb H
- Hemoglobinopathy
- Newborn, Dried Blood Spot
- Early referral for comprehensive care before onset of illness

Human Globin Genes and Products



Hemoglobins in Development

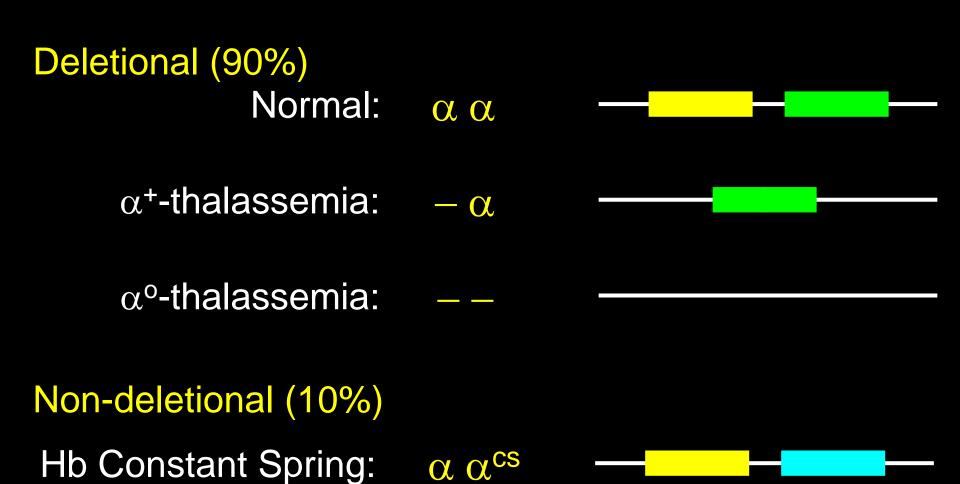

Embryonic Hemoglobins (early pregnancy)

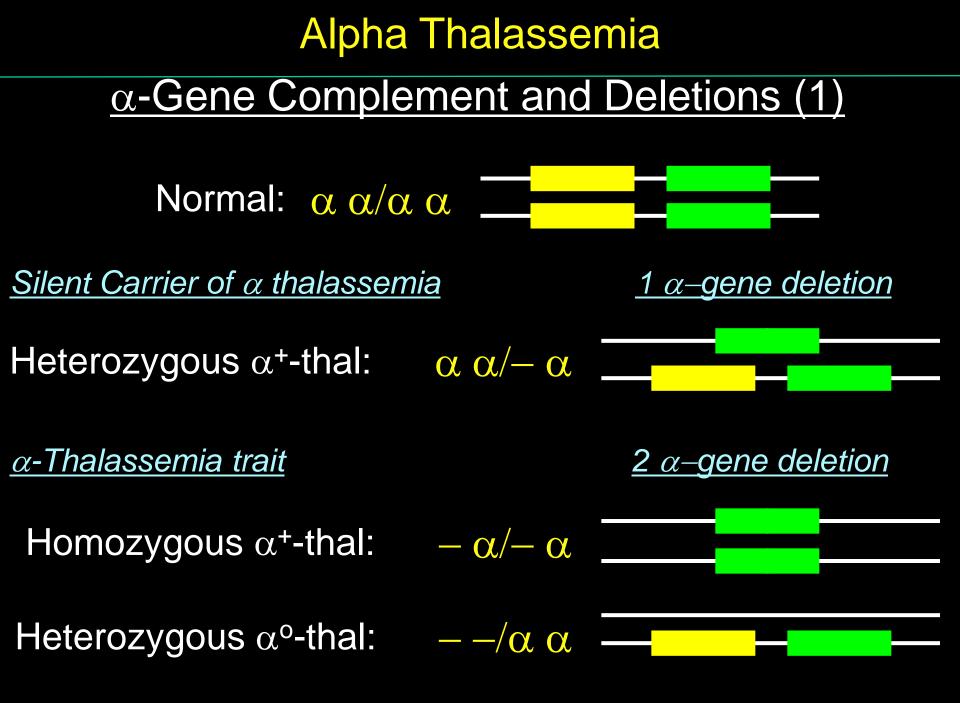
Hemoglobins in Development Human Hemoglobin Genes and Products

Fetal hemoglobin (Hb F

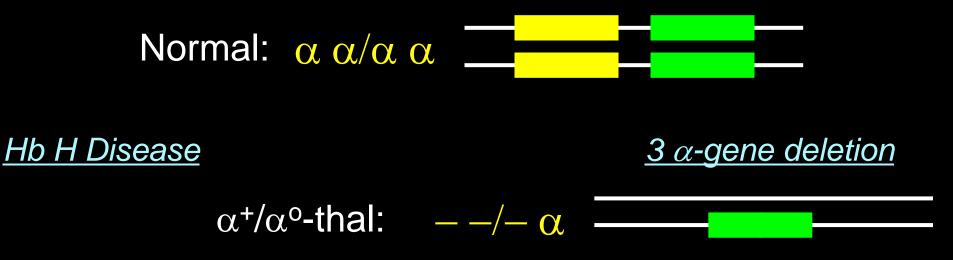
Hemoglobins in Development Human Hemoglobin Genes and Products

Hemoglobins in Development Human Hemoglobin Genes and Products




Alpha thalassemia results from a deficiency in α -globin production

<u>Globin Imbalance</u>


Normal Hb	Globin composition	α Thalassemia	Abnormal Hb
F	$\alpha_2 \gamma_2$	Excess γ	Bart's (γ_4)
A	$\alpha_2 \beta_2$	Excess β	Η (β ₄)

Alpha Thalassemia Causes of α Thalassemia

<u>α-Gene Complement and Deletions (2)</u>

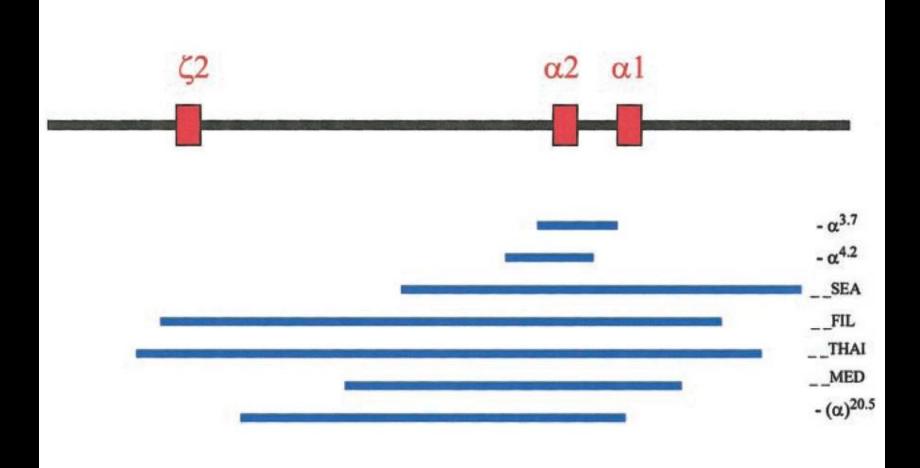
Hydrops fetalis

Homozygous α^{o} -thal: _____

<u>4 α-gene deletion</u>

<u>Mechanism of Deletional a+ Thalassemia</u>

ααα


triplicated

1-deletion

Misalignment of α gene alleles and unequal crossover during prophase of meiosis

Exact point of crossover determines length of deletion, -3.7 kb and -4.2 kb being most common

Examples of Deletional α^o Thalassemia

Chui et al., Blood, 2003;101; 791

<u>Hb H Disease</u>

Normal: $\alpha \alpha / \alpha \alpha$

<u>Deletional</u>

<u>3 *a*-gene deletion</u>

$$\alpha^+/\alpha^{\circ}$$
-thal: $--/-\alpha$

"Non-deletional"

Hb Constant Spring: $-/\alpha \alpha^{cs}$ -

Geographic Distribution of a Thalassemia

Gene Frequency of α thalassemia

concregacity of a malaccomma				
Region	α^{o} thal	MED %	α^+ thal	- α ^{3.7} %
Sub-Saharan Africa	0		0.1 – 0.33	90-100
Mediterranean Basin	0.001 – 0.01	50 – 100	0.011 – 0.1	20-96
Arabian Peninsula	0 – 0.005		0.27 – 0.67	67-95
India	0		0.09 - 0.92	33-100
Southeast Asia	0.009 – 0.07	98-100	0.01 – 0.16	28-100
China	0.002 – 0.15	21-100	0.003 - 0.04	23-100
Oceania	0		0.03 – 0.38	14-100

Distribution mirrors that of regions with history of endemic malaria

Hb H Disease Genotypes

Hb H disease	No. of patients	%
Deletional	266	83
(SEA/-α ^{3.7})	175	55
$(SEA/-\alpha^{4.2})$	37	12
(^{FIL} /-α ^{3.7})	36	11
(^{MED} /-α ^{3.7})	8	2
(^{THAI} /-α ^{3.7})	2	< 1
(^{BRIT} /-α ^{3.7})	1	< 1
(^{SA} /-α ^{3.7})	1	< 1
(de novo/-α ^{3.7})	1	< 1
(SEA/-α4.2 Q-Thailand [Codon 74 GAC>CAC or Asp→His])	4	1
(FIL/-α4.2 Q-Thalland [Codon 74 GAC>CAC or Asp→His])	1	<1

Chui et al., Blood, 2003;101; 791

Hb H Disease Genotypes

α -Globin genotypes in 319 Hb H patients from California, Hong Kong, and	
Ontario: Non-deletional Syndromes	

Hb H disease	No. of patients	%
Nondeletional	53	17
$(-SEA/\alpha$ Constant Spring [Codon 142 TAA>CAA or Ter-Gin] α)	31	10
$(-SEA/\alpha^{Quong Sze} [Codon 125 CTG>CCG or Leu \rightarrow Pro]_{\alpha})$	7	2
$(-SEA/\alpha Codon 30 deletion of GAG\alpha)$	3	< 1
$(-TOT/\alpha Codon 30 deletion of GAG\alpha)$	1	< 1
$(-SEA/\alpha$ initiation codon ATG>AG α)	1	< 1
$(-THAI/\alpha$ Initiation codon ATG>AG α)	1	< 1
$(-SEA/\alpha^{Codon 31 AGG>AAG or Arg \rightarrow Lys_\alpha)$	2	< 1
$(-FIL/\alpha^{Codon 35 TCC>CCC or Ser \rightarrow Pro}\alpha)$	1	< 1
$(MED/\alpha IVS I deletion of TGAGG\alpha)$	1	< 1
$(-SEA/\alpha^{Codon 50 GGC>GAC or Gly \rightarrow Asp}\alpha)$	1	< 1
(SEA/αPakse [Codon 142 TAA>TAT or Ter→Tyr)α)	2	< 1
(THAI/αConstant Spring [Codon 142 TAA>CAA or Ter→Gin]α)	1	< 1
$(\alpha^{Hb} \text{ Sallanches} [Codon 104 TGC>TAC or Cys \rightarrow Tyr] \alpha / \alpha^{Hb} \text{ Sallanches} \alpha)$	1	< 1
17/23 30 30 30 30 30 50 50 60 30 30 30 30		

Pathophysiology

- 1. Deficiency of α globin mRNA and α -globin chains
 - α/β mRNA ratio < 0.5
 - α/β globin chain ratio, 0.2 to 0.7
- 2. Fetal development:

Excess γ -globin chains for γ_4 tetramers (Hb Bart's)

3. Switch from Hb F to Hb A predominance:

Excess β -globin chains for β_4 tetramers (Hb H)

4. Hb H

- High O₂ affinity, insignificant tissue O₂ delivery
- Unstable, oxidized to form precipitates (Hb H inclusion bodies)
- Hb H precipitates cause
 - early erythroid cell death
 - ineffective erythropoiesis
 - membrane damage leading to hemolysis

Clinical Presentation

Wasi, 1974:

Thailand: 1,002 patients (200 adults, 502 children)

- Age at presentation: Birth to 74 years
- Infants: Near normal Hb at birth, no hepatosplenomegaly

Chen, 2000:

- Hong Kong: 114 patients
- Only 24% presented with symptoms; 76% discovered incidentally
- 13% growth failure in 13%, $< 3^{rd}$ %

Most patients discovered through routine hematologic tests or with symptoms of acute or chronic hemolytic anemia: pallor, fatigue, jaundice

Hb H Disease

Hemoglobin Levels

	Hemoglobin, g/L (n)		
Hb H disease	Male	Female	
Deletional	111 ± 11 (28)	94 ± 12 (59)	
	105 ± 10 (40)	88 ± 11 (47)	
	106 ± 13 (10)	91 ± 9 (41)	
	100 ± 1	12 (67)	
Nondeletional	105 ± 10 (6)	85 ± 7 (5)	
	86 ± 19 (11)	83 ± 20 (14)	
	96 ± 1	11 (64)	

Hb H Disease

MCV and MCH Levels

MCV,	, fL (n)	MCH,	pg (n)
Male	Female	Male	Female
65 ± 7	7 (121)	19 ± 3	2 (120)
63 ± 5 (40)	64 ± 6 (47)	19 ± 1 (40)	19 ± 2 (47)
62 ± 4 (10)	62 ± 5 (41)	19 ± 2 (10)	19 ± 2 (41)
67 ± 7	7 (56)	19 ± 3	2 (56)
68 ± 0	6 (14)	19 ± 3	2 (14)
73 ± 7 (11)	72 ± 7 (14)	21 ± 2 (11)	20 ± 2 (14)
77 ± 5	5 (47)	21 ± 2	2 (47)

Clinical Course

Wide clinical spectrum

- Acute anemia with febrile illness, oxidising agents
 usually hemolytic, but also erythroid aplasia
- Splenomegaly common, hepatomegaly uncommon
- Iron overload, common in SEA uncommon in Mediterranean genotypes, not related to transfusion but increased absorption
- Cholelithiasis
- Anemia may worsen in pregnancy;
 pre-eclampsia, and CHF reported

<u>Treatment</u>

Primarily preventive and supportive

- Folic acid supplementation
- Education about signs of acute anemia, palpation of spleen
- Avoidance of oxidative medications
- No iron therapy, unless iron deficiency is documented
- Monitoring for iron overload; iron chelation therapy if needed
- Episodic red cell transfusion as needed for acute illness
- Chronic transfusion therapy
- Close monitoring of pregnant women
- Splenectomy for those with hypersplenism

Hemoglobin H Disease Indications for Chronic Transfusion

- 1. Confirmation of diagnosis of severe thalassemia
- 2. Anemia: Hb levels persist at < 7 g/dL
- 3. Poor growth and weight gain
- 4. Bony changes
- 5. Extramedullary hematopoiesis

Screening Test in Neonates

Identification and Quantitation of Hb Bart's

HPLC of dried blood samples

- California experience
 - Hb Bart's > 25% for DNA-based analyses

Isoelectric focusing

- Quantitation of Bart's by scanning of gel, or,
- Quantitation of Bart's by HPLC

Other less common methods

Alpha Thalassemia Levels of Hb Bart's and Hb H

Definition	Genotype	Hb	Phenotype
1 gene deletion - silent carrier	<u>-α</u> /α α	Newborn:	Bart's 1%–2%
2 gene deletion - a thalassemia trait	$-\alpha/-\alpha$ or $/\alpha \alpha$	Newborn:	Bart's 3%–10%
3 gene deletion - Hb H disease	— —/— α	Newborn: Older child:	Bart's 20–30% Hb H 10%–15% Hb F 10%
Hb H + Constant Spring - 2 gene deletion and Constant Spring mutation	— –/α α ^{cs}	Older child:	Hb CS 2%– 3% Hb H 20%–40%
4 gene deletion - Hydrops Fetalis	/	Newborn:	Bart's 80%–100%
Nondeletional mutation	$\alpha \alpha \alpha \alpha^{\text{variant}}$	~2% variant	Hb

Confirmatory Tests

DNA-based Molecular Analyses

Several techniques required to identify specific lesions

- Southern blot with specific probes for ζ and $\alpha\mbox{-globin}$ genes
- PCR with deletion-specific primers for the 2-gene cis deletions
 - California: multiplex gap PCR genotyping for common deletion and for non-deletion CS mutation
- Non-deletion syndromes by gene amplification and direct sequencing of allele-specific dot-blot hybridization

Hemoglobin Genotypes Confirmed Jan 1998 – Jun 2006 (1)				
Diagnosis	No.	Incidence per 100,000 screened		
Sickle cell disease	688	15.2		
Alpha thalassemia (Hb H) syndromes	502	11.1		
Beta thal syndromes	79	1.8		
Other mutations	862	19.1		

Michlitsch et al, Pediatr Blood Cancer 2009;52:486-490

Nomination for Newborn Screening

- 1. Condition medically serious?
- 2. Pilot data available?
- 3. Clinical spectrum known
- 4. Screening test specificity
- 5. Severe cases easily identifiable?
- 6. Treatment

- Yes; variable course
- Yes; California
- Yes; not easily predicted
- False negative rate unclear
- Over time; anemia

Symptomatic; most patients will not require medical intervention in infancy

Nomination for Newborn Screening

- 1. Current newborn screening labs are capable of measuring Hb Bart's level with little or no additional equipment.
- 2. State programs can include specific training for quantitation and reporting of Hb Bart's and referral of babies with elevated Bart's for DNA-based studies
- 3. Reference laboratory service for DNA-based tests
- 4. Education and counseling regarding α thalassemia