Report from Evidence Review

Advisory Committee on Heritable Disorders in Newborns and Children
January 22, 2010

Alex R. Kemper, MD, MPH, MS Department of Pediatrics, Duke University

Recent Progress and Activities

- Hemoglobin H (Hb H) Disease
 - Preliminary review submitted in January 2009
 - Presentation today limited to published materials
- Krabbe Disease
 - Final report presented in September 2009
 - Revised final report submitted in December 2009
 - Manuscript undergoing clearance review; will be submitted to Genetics in Medicine
- Overview paper describing ERG process in press at Genetics in Medicine, as well as brief summaries of three final reports

Workgroup Team Members

Key authors:

- Alex R. Kemper, MD, MPH, MS, Duke University
- Alixandra Knapp, MS, MGH/Harvard
- Danielle Metterville, MS, MGH/Harvard

Program director:

James M. Perrin, MD, MGH/Harvard

Staff:

- Marsha Browning, MD, MPH, MGH/Harvard
- Anne Comeau, PhD, New England Newborn Screening Program/UMass Medical School
- Nancy Green, MD, Columbia University
- Lisa Prosser, PhD, University of Michigan Health System
- Denise Queally, JD, Consumer (PKU Family Coalition)

Hb H Disease Overview

- Inherited hemoglobinopathy, type of alpha-thalassemia
- Caused by deletions and/or nondeletional mutations of 3 of the 4 α-globin genes
- Variable clinical course
 - Symptoms include anemia, hepatosplenomegaly, cholelithiasis, or growth retardation
- Certain mutations associated with worse health outcomes

Hemoglobin Overview

Hemoglobin	Subunits	Timing
Hb F (Fetal)	2α, 2γ	Predominant Hb in fetal life
Hb A (Adult)	2α, 2β	Predominant Hb soon after birth
Hb Bart's	4 γ	Present in newborns with α-globin deficiency
Hb H	4β	Present in individuals with α-globin deficiency

Normal

α-Globin deficiency

Alpha-Thalassemia Overview

Description & Terminology	α1 and α2 Genes Chromosome 16	Genotype
Normal	4 functional α -globin genes	αα/αα
Silent carrier	1 deletion	-α/αα
Alpha-thalassemia trait	2 deletions	-α/-α /αα
Hb H disease (deletional)	3 deletions	/-α
Hb H disease (nondeletional)	2 deletions + 1 mutation (T)	/ α ^T α
Example: Hb H disease with CS*	2 deletions + CS mutation (α2 142 TAA→CAA or Ter→Gln)	/α ^{CS} α
Hb Bart's hydrops fetalis	4 deletions	/

^{*}CS = Constant Spring

Rationale for Review

- 1. Individuals with Hb H disease may experience significant anemia and growth retardation
- 2. Presymptomatic identification of infants with Hb H disease may improve health outcomes
- Newborn screening is possible using dried blood spots
 - a) California has screened for Hb H disease since October 1999
 - Newborn screening occurs in critical window for Hb Bart's detection
 - c) Current state hemoglobinopathy screening technologies could be used for Hb H disease

Methods of Evidence Review

- Preliminary report (today)
 - Systematic literature review to summarize evidence from published studies

- Final report
 - Consultation with multiple Hb H disease investigators and advocates and assessment of unpublished data

Key Topics Reviewed: Hb H Disease

- Incidence
- Natural history
- Testing
 - Screening
 - Diagnostic
- Treatment
- Economic evaluation
- Critical evidence needed

Materials Included in Preliminary Review

- Detailed literature review methods
- Summary of evidence from literature review
- Tables highlighting key data from abstracted articles
- Table of studies excluded because they are based on 4 or fewer cases
- Bibliography

Systematic Literature Review

- January 1989 October 2009
 - Medline, OVID In-Process and Other Non-Indexed Citations
 - English language only
 - Human studies only
- Reviewed references from nomination form and bibliography of review papers
- 1362 abstracts selected for preliminary review
- 88 articles selected for in-depth review
- 19 articles met all inclusion criteria for abstraction

Papers Meeting Review Criteria

Study Design	Number of papers
Experimental intervention	0
Cohort study	0
Case-control study	1
Case series	12
Sample size ≤ 10	0
Sample size 11 to 50	3
Sample size 51 to 100	2
Sample size ≥ 101	7
Economic Evaluation	0
Cross-sectional study	6
Total studies	19

Quality Assessment Methods Used

- By Study Design
 - Compare within, not between, study design categories
- By Study Goal
 - Natural history, Treatment, Screening test, Economic evaluation
 - Example: Sensitivity and specificity of screening
 - Data obtained from screening program in U.S. population or similar
 - Data from systematic studies other than whole population screening
 - Estimated from known biochemistry of the condition

Quality Assessment: Natural History

Type of evidence	Number of articles
Total (two articles overlap with screening)	18
Incidence (cases per 100,000), average within the U.S.	3
Data obtained from whole-population screening or comprehensive national surveys of clinically detected cases.	2
Ia. As in I but more limited in geographical coverage or methodology.	1
Extrapolated from class I data for non-U.S. populations.	0
Estimated from number of cases clinically diagnosed in U.S.	0
Genotype-Phenotype correlation	12
Data from retrospective screening studies in U.S. or similar population.	0
Data from systematic studies other than whole population screening.	10
Estimated from the known clinical features of the condition as described for individual cases or short series.	2
Other natural history of disease	3

Adapted from Pandor et al. 2004, Pollitt et al. 1997

Natural History: Incidence

Incidence	Method	Citation
1/15,000 for Hb H disease	Newborn screening in California from January 1998 to June 2000	Lorey et al. 2001
9/100,000 for Hb H disease 0.6/100,000 for Hb H with CS	Newborn screening in California from January 1998 to June 2006	Michlitsch et al. 2009

Deletional vs. Nondeletional Hb H Disease

Region	Citation	Deletional Hb H disease	Nondeletional Hb H disease
Hong Kong	Chen et al, 2000	87/114 (76%)	27/114 (24%)
Northern Thailand	Charoenkwan et al, 2005	44/102 (43%)	58/102 (57%)
Mediterranean area	Origa et al, 2007	216/251 (86%)	36/251 (14%)
Greece	Kanavakis et al, 2000 (14 subjects not counted with two non-deletions)	41/61 (67%)	20/61 (33%)
Sardinia	Gallano et al, 1992 (1 subject not counted with two non-deletions)	130/154 (84%)	24/154 (16%)
California, USA*	Lorey et al, 2001	69/89 (77.5%)	20/89 (22.5%)

^{*}Population-based study, remaining studies are from clinically identified populations

Natural History: Case Series Reports

- Newborn
 - Anemia, jaundice, hepatosplenomegaly (CS)
 - Reports of Hb H hydrops fetalis
- Infancy and childhood
 - Pallor, growth retardation, anemia
 - Pulmonary function defect, mild cardiac anomalies, hepatosplenomegaly
- Adult
 - Iron overload, cholelithiasis

Deletional vs. Nondeletional Hb H Disease

- Children with nondeletional Hb H disease
 - Diagnosed at younger ages
 - Higher rates of anemia and blood transfusion
 - Higher rates of hepatosplenomegaly

Quality Assessment: Screening Test

Type of evidence	Number of articles
Total (two articles overlaps with condition/natural history)	3
Overall sensitivity and specificity of screening	1
Data obtained from screening programs in U.S. population or similar.	1
Data from systematic studies other than from whole population screening.	0
Estimated from the known biochemistry of the condition.	0
False positive rate	0
Data obtained from screening programs in U.S. population or similar.	0
Data from systematic studies other than from whole population screening.	0
Estimated from the known biochemistry of the condition.	0
Repeat specimen rate	0
Data obtained from screening programs in U.S. population or similar.	0
Data from systematic studies other than whole population screening.	0
Estimated from the known biochemistry of the condition.	0
Second-tier testing	2
Data obtained from screening programs in U.S. population or similar.	1
Data from systematic studies other than whole population screening.	0
Estimated from the known biochemistry of the condition.	1
Other screening test characteristics	1

Adapted from Pandor et al. 2004, Pollitt et al. 1997

Screening Method

First tier: Detect elevated Hb Bart's levels

 Second tier: Confirmatory diagnostic αglobin genotyping for newborns with elevated Hb Bart's

Development of California Hb H Disease Newborn Screening Program

- "Trial period" June 1996 September 1999
- Measure Hb Bart's level by high-performance liquid chromatography (HPLC)
- Cutoff Hb Bart's level set at 14% in June 1996
 - Lowest Hb Bart's in newborn confirmed to have Hb H disease was 27%
- Cutoff Hb Bart's level increased to 25% in August 1998
- Hb H Disease newborn screening mandated in October 1999

California Screening Experience

From Lorey et al. 2001

January 1998 -June 2000 data

Total newborns screened	1,320,000
Newborns with elevated Hb Bart's	101
Hb H disease	89
α-Thalassemia trait	9
α-Thalassemia silent carrier	1
Hb Bart's hydrops fetalis	1
Normal	1

• Because most newborns with Hb Bart's levels *below* the cutoff value did not have confirmatory testing, an undetected case of Hb H disease in this range could not be ruled out

Diagnosis

 Multiple strategies for α-globin genotyping have been described

 California newborn screening program uses a multiplexed gap-PCR assay to detect common deletional and nondeletional α-thalassemia mutations in newborns with elevated Hb Bart's

Quality Assessment: Treatment

Type of evidence	Number of articles
Total	0
Effectiveness of treatment	0
I. Well-designed RCTs.	0
I. Well-designed RCTs.	0
II-1. Well-designed controlled trials with pseudo randomization or no randomization.	0
II-2. Well-designed cohort studies:	0
A. prospective with concurrent controls	0
B. prospective with historical control	0
C. retrospective with concurrent controls.	0
II-3. Well-designed case-control (retrospective) studies.	0
III. Large differences from comparisons between times and/or places with and without intervention	0
IV. Opinions of respected authorities based on clinical experience, descriptive studies and reports of expert committees.	0
Other treatment characteristics	0

Adapted from Pandor et al. 2004, Pollitt et al. 1997

Follow-up and Treatment

 No peer-reviewed publications regarding presymptomatic treatment were identified

 No data published on follow-up of children identified in California

Economic Evidence

 No peer-reviewed publications relating to costs or cost-effectiveness of screening and treatment identified

 Insufficient data available for an economic evaluation

Key Findings

- Compared to children with deletional Hb H disease, those with nondeletional Hb H disease more often had:
 - Jaundice
 - Hepatosplenomegaly
 - Growth retardation
 - Blood transfusions

 Most published natural history evidence is from studies on clinically identified populations in older children and adults

Key Findings

 California data suggests HPLC for elevated Hb Bart's is a feasible Hb H disease newborn screening method

 Validated methods for diagnosis of Hb H disease by confirmatory genotyping exist

Critical Evidence Needed: Hb H Disease

- What is the natural history during the newborn period and first five years of life?
- What are the benefits of early diagnosis?
 - What treatment methods are available?
 - What is the effectiveness of treatment?

Hb H Disease and Newborn Screening Experts to Consult

- Charles Brokopp, PhD, Wisconsin State Laboratory of Hygiene
- Michele Caggana, ScD, New York State Department of Health
- David Chui, MD, Boston Medical Center
- Thomas Coates, MD, Children's Hospital Los Angeles
- Alan Cohen, MD, Children's Hospital of Philadelphia
- Roger Eaton, PhD, New England Regional Newborn Screening Program
- Carolyn Hoppe, MD, Children's Hospital Oakland Research Institute
- Franz Kuypers, PhD, Children's Hospital Oakland Research Institute
- Fred Lorey, PhD, California State Newborn Screening Laboratory
- Robert Mignacca, MD, Children's Hospital Central California
- Ellis Neufeld, MD, PhD, Children's Hospital Boston
- Nancy Olivieri, BSc, MD, Toronto General Research Institute
- Sylvia Singer, MD, Children's Hospital Oakland Research Institute
- Elliott Vichinsky, MD, Children's Hospital and Research Center at Oakland
- David Weatherall, MD, University of Oxford

Thank you