Report from Evidence Review Advisory Committee on Heritable Disorders in Newborns and Children May 14, 2010

> Alex R. Kemper, MD, MPH, MS Department of Pediatrics, Duke University

Recent Progress and Activities

• Hemoglobin H (Hb H) Disease

- Final review submitted April 2010
- Presentation will focus on
 - Update of evidence
 - Summary of key considerations for the Advisory Committee

• Critical Congenital Cyanotic Heart Disease (CCCHD)

- Preliminary review submitted April 2010
- Presentation will focus on
 - Summary of test characteristics of pulse oximetry
 - Improvements in the process of evidence review based on our experience, other approaches to review, and recommendations from the Advisory Committee
- Overview paper re ERG procedures published in *Genetics in Medicine*

• Krabbe Disease

• Manuscript submitted to Genetics in Medicine

Workgroup Team Members

Key authors:

- Alex R. Kemper, MD, MPH, MS, Duke University
- Alixandra A. Knapp, MS, MGH/Harvard
- Danielle Metterville, MS, MGH/Harvard

Program director:

• James M. Perrin, MD, MGH/Harvard

Staff:

- Marsha Browning, MD, MPH, MGH/Harvard
- Anne Comeau, PhD, New England Newborn Screening Program/UMass Medical School
- Nancy Green, MD, Columbia University
- Lisa Prosser, PhD, University of Michigan Health System
- Denise Queally, JD, Consumer (PKU Family Coalition)

Hb H Disease Overview

- Inherited hemoglobinopathy, type of alpha-thalassemia
- Caused by deletions and/or nondeletional mutations of 3 of the 4 α-globin genes
- Variable clinical course
 - May include anemia, hepatosplenomegaly, cholelithiasis, or growth retardation
- Certain mutations associated with worse health outcomes

Alpha-Thalassemia Overview

Description & Terminology	α1 and α2 Genes Chromosome 16	Genotype
Normal	4 functional α -globin genes	αα/αα
Silent carrier	1 deletion	-α/αα
Alpha-thalassemia trait	2 deletions	-α/-α /αα
Hb H disease (deletional)	3 deletions	/-α
Hb H disease (nondeletional)	2 deletions + 1 mutation (T)	 /α ^τ α
Example: Hb H disease with CS*	2 deletions + CS mutation (α 2 142 TAA \rightarrow CAA or Ter \rightarrow Gln)	/α ^{cs} α
Hb Bart's hydrops fetalis	4 deletions	/

*CS = Constant Spring

Current Status of Hb H Screening

- Currently a secondary target
 - Conditions that are part of the differential diagnosis of a core panel condition or that would be identified in the process of screening for the core panel conditions
- At least 8 states report Hb Bart's (Jelili Ojodu, MPH; APHL)

Methods of Evidence Review

- Systematic literature review
 - Summarizes evidence from published studies
 - Presented at January 2010 AC Meeting
 - Updated for this meeting (2 additional case series related to natural history)
- Consultation with multiple newborn screening and Hb H disease experts to identify relevant unpublished data

Materials Included in Final Review

- Detailed literature review methods
- Summary of evidence from literature review and expert unpublished data
- Tables highlighting key data from abstracted articles
- Table of studies excluded because they report 4 or fewer cases
- Bibliography

Systematic Literature Review

- January 1989 March 2010
 - Medline, OVID In-Process and Other Non-Indexed Citations
 - English language only
 - Human studies only
- Reviewed references from nomination form and bibliography of review papers
 - 1485 abstracts selected for preliminary review
 - 90 articles selected for in-depth review
 - 21 articles met all inclusion criteria for abstraction

Papers Meeting Review Criteria

Study Design	Number of papers
Experimental intervention	0
Cohort study	0
Case-control study	1
Case series	14
Sample size ≤ 10	0
Sample size 11 to 50	3
Sample size 51 to 100	2
Sample size ≥ 101	9
Economic Evaluation	0
Cross-sectional study	6
Total studies	21

Quality Assessment: Natural History

Type of evidence

Number of articles

Total (two articles overlap with screening)	20
Incidence (cases per 100,000), average within the U.S.	3
Data obtained from whole-population screening or comprehensive national surveys of clinically detected cases.	2
Ia. As in I but more limited in geographical coverage or methodology.	1
Extrapolated from class I data for non-U.S. populations.	0
Estimated from number of cases clinically diagnosed in U.S.	0
Genotype-Phenotype correlation	14
Data from retrospective screening studies in U.S. or similar population.	0
Data from systematic studies other than whole population screening.	10
Estimated from the known clinical features of the condition as described for individual cases or short series.	2
Other natural history of disease	3

Adapted from Pandor et al. 2004, Pollitt et al. 1997

Natural History: Incidence

Incidence	Method	Citation
1/15,000 for Hb H disease	Newborn screening in California from January 1998 to June 2000	Lorey et al. 2001
9/100,000 for Hb H disease 0.6/100,000 for Hb H with CS	Newborn screening in California from January 1998 to June 2006	Michlitsch et al. 2009

Deletional vs. Nondeletional Hb H Disease

Region	Citation	Deletional Hb H disease	Nondeletional Hb H disease
Hong Kong	Chen et al, 2000	87/114 (76%)	27/114 (24%)
Northern Thailand	Charoenkwan et al, 2005	44/102 (43%)	58/102 (57%)
Mediterranean area	Origa et al, 2007	216/251 (86%)	36/251 (14%)
Greece	Kanavakis et al, 2000 (14 subjects not counted with two non-deletions)	41/61 (67%)	20/61 (33%)
Sardinia	Gallano et al, 1992 (1 subject not counted with two non-deletions)	130/154 (84%)	24/154 (16%)
California, USA*	Lorey et al, 2001	69/89 (77.5%)	20/89 (22.5%)

*Population-based study, remaining studies are from clinically identified populations

Deletional vs. Nondeletional Hb H Disease

Children with nondeletional Hb H disease

- Diagnosed at younger ages
- Higher rates of anemia and blood transfusion
- Higher rates of hepatosplenomegaly

Natural History: Case Series

- No population or screen-positive series
- Newborn
 - Anemia, jaundice, hepatosplenomegaly (CS)
 - Reports of Hb H hydrops fetalis
- Infancy and childhood
 - Pallor, growth retardation, anemia
 - Pulmonary function defect, mild cardiac anomalies, hepatosplenomegaly
- Adult
 - Iron overload, cholelithiasis

Quality Assessment: Screening Test

Type of evidence	Number of articles		
Total (two articles overlaps with condition/natural history)	3		
Overall sensitivity and specificity of screening	1		
Data obtained from screening programs in U.S. population or similar.	1		
Data from systematic studies other than from whole population screening.	0		
Estimated from the known biochemistry of the condition.	0		
False positive rate	0		
Data obtained from screening programs in U.S. population or similar.	0		
Data from systematic studies other than from whole population screening.	0		
Estimated from the known biochemistry of the condition.	0		
Repeat specimen rate	0		
Data obtained from screening programs in U.S. population or similar.	0		
Data from systematic studies other than whole population screening.	0		
Estimated from the known biochemistry of the condition.	0		
Second-tier testing	2		
Data obtained from screening programs in U.S. population or similar.	1		
Data from systematic studies other than whole population screening.	0		
Estimated from the known biochemistry of the condition.	1		
Other screening test characteristics	1		

Adapted from Pandor et al. 2004, Pollitt et al. 1997

California Screening Method

- First tier: Detect elevated Hb Bart's levels by HPLC
- Second tier: Confirmatory diagnostic αglobin genotyping for newborns with elevated Hb Bart's

Development of California Hb H Disease Newborn Screening Program

- "Trial period" June 1996 September 1999
- Measure Hb Bart's level by high-performance liquid chromatography (HPLC)
- Cutoff Hb Bart's level set at 14% in June 1996
 - Lowest Hb Bart's in newborn confirmed to have Hb H disease was 27%
- Cutoff Hb Bart's level increased to 25% in August 1998
- Hb H Disease newborn screening mandated in October 1999

Diagnosis

- Multiple strategies for α-globin genotyping have been described
- For example, the California newborn screening program uses multiplexed gap-PCR assay to detect common deletional and nondeletional α-thalassemia mutations in their second tier screening

California Screening Experience

From Lorey et al. 2001	January 1998 - June 2000 data
Total newborns screened	1,320,000
Newborns with elevated Hb Bart's	101
Hb H disease	89
α-Thalassemia trait	9
α-Thalassemia silent carrier	1
Hb Bart's hydrops fetalis	1
Normal	1

Because most newborns with Hb Bart's levels *below* the cutoff value did not have confirmatory testing, an undetected case of Hb H disease in this range could not be ruled out

Quality Assessment: Treatment

Type of evidence

Number of articles

Total	0
Effectiveness of treatment	0
I. Well-designed RCTs.	0
I. Well-designed RCTs.	0
II-1. Well-designed controlled trials with pseudo randomization or no randomization.	0
II-2. Well-designed cohort studies:	0
A. prospective with concurrent controls	0
B. prospective with historical control	0
C. retrospective with concurrent controls.	0
II-3. Well-designed case-control (retrospective) studies.	0
III. Large differences from comparisons between times and/or places with and without intervention	0
IV. Opinions of respected authorities based on clinical experience, descriptive studies and reports of expert committees.	0
Other treatment characteristics	0

Adapted from Pandor et al. 2004, Pollitt et al. 1997

Follow-up and Treatment

- No peer-reviewed publications regarding presymptomatic treatment were identified
- No data published on follow-up of children identified in California

Economic Evidence

 No peer-reviewed publications relating to costs or cost-effectiveness of screening and treatment identified

Unpublished Data

- Contacted Hb H disease experts identified through:
 - Literature review
 - Discussion within workgroup
 - Recommendation by other experts
- Included experts from different Hb H disease domains:
 - Newborn screening
 - Clinical care

Experts & Advocates – Survey / Interview Completed

•Sylvia Au, MS, CGC

- •Thomas Coates, MD
- •Alan Cohen, MD
- •Michael Glass, MS
- Patrick Hopkins
- •Carolyn Hoppe, MD
- •Ho-Wen Hsu, MD
- •Fred Lorey, PhD

- Jennifer Marcy, MS, CGC
 Ellis Neufeld, MD, PhD
 Sarah Scollon, MS, CGC
 Sylvia Singer, MD
 Elliott Vichinsky, MD
 David Weatherall, MD, FRCP, FRS
 - •Kelley Woodruff, MD

Unpublished Data

- Experts corroborated literature findings
- No other data on the impact of pre- or early symptomatic treatment
- No systematic follow up data on any screen positive populations
- Insufficient data for economic analysis

Other State Screening Programs

State Lab	Starting Year	1 st tier	1 st tier cutoff	2 nd tier	Reporting and confirmatory testing
Hawaii	July 1997	IEF	Hb Bart's	HPLC	Hb Bart's ≥25% - considered screen positive
lowa	Iowa- 1988 North Dakota- 2003 South Dakota- 2007	IEF	Visually abnormal	HPLC Variant	 10% ≤ Hb Bart's < 25% - reported Hb Bart's ≥ 25% - reported and follow up team is alerted that this infant may have Hb H disease

IEF=Iso-electric focusing

Other State Screening Programs

State Lab	Starting Year	1 st tier	1 st tier cutoff	2 nd tier	Reporting and confirmatory testing
Missouri	1989	IEF	Two distinct Hb Bart's bands	HPLC	3% <u><</u> Hb Bart's < 13% - Within Normal Limits + Low Level Bart's Comment
			easily visible		13% <u>< Hb Bart's < 20%</u> - Abnormal: Slightly Elevated Hb Bart's, DNA DBS testing at Children's Hospital of Oakland Research Inst (CHORI)
					Hb Bart's <u>></u> 20% - Presumptive positive for Hb H disease, referred to Hemoglobinopathy Center and DBS DNA testing at CHORI
Washington	1991	IEF	Hb Bart's bands	HPLC	6.5% \leq Hb Bart's \leq 18% - reported as possible α-thalassemia trait
					Hb Bart's > 18% - reported as possible Hb H Disease, physician notified and sent information on follow up

Unpublished Data: California

 Common mutation panel identifies the majority of cases of Hb H disease in the California newborn population

• If no mutation detected:

- DNA sequencing for other nondeletional mutation (99% sensitivity)
- Multiplex ligation-dependent probe amplification (MLPA) for rare deletions

Unpublished Data: Hawaii

- 222,982 newborns screened in Hawaii from July 1997 October 2009
- Newborn's physician receives test results
- Positive results accompanied by recommendation for referral to state Hemoglobinopathy Clinic for genetic counseling and α-globin testing
- Only about 25% of the 214 screen-positive children referred
- In 2008, Hawaii agreed to cover additional costs of the newborn's parents' genetic testing, and referrals have increased
- 48 confirmed cases of Hb H disease

Summary: Natural History and Screening

- Published natural history evidence
 - Studies on clinically identified populations
 - Older children and adults
- Children with nondeletional Hb H disease appear to have more jaundice, hepatosplenomegaly, growth retardation and blood transfusions than those with deletional Hb H disease
- California data suggest feasibility of newborn screening by HPLC for elevated Hb Bart's
- Data from other states suggest feasibility of IEF as a first tier screening method
- Validated methods for diagnosis of Hb H disease by confirmatory genotyping exist

Evidence Gaps

- What proportion of children with Hb H disease would benefit from condition-specific treatment?
 - Lack of systematic follow up data on screen-positive children
- How does this vary across the US?
- Does early identification improve the health of identified children?
- What harms are associated with delay in diagnosis?
- What is the cost-effectiveness of newborn screening for Hb H disease?

Key Questions for the Advisory Committee

- What is the threshold for moving a target from secondary to core?
- What are the potential advantages for such a move?
- What are the potential harms for such a move?
- What are the expectations for newborn screening laboratories, public health, clinicians, and families after such a move?

Questions for the ERW