CLIAC Recommendations for Development of Good Laboratory Practice Guidelines for Biochemical Genetic Testing and Newborn Screening

Bin Chen, PhD

Centers for Disease Control and Prevention (CDC)

Carol Greene, MD

President-elect, Society for Inherited Metabolic Disorders Professor of Pediatrics, Univ. of Maryland School of Medicine

Secretary's Advisory Committee for Heritable Diseases in Newborns and Children Meeting September 16-17, 2010

Office of Surveillance, Epidemiology, and Laboratory Services

Outline

Development of Clinical Laboratory Improvement Advisory Committee (CLIAC) recommendations for good laboratory practices in biochemical genetic testing and newborn screening for inborn errors of metabolism – Dr. Bin Chen

 CLIAC Recommendations for Good Laboratory Practices and Implications for Newborn Screening – Dr. Carol Greene

CDC guideline development and issues for SACHDNC input – Dr. Bin Chen

Clinical Laboratory Improvement Advisory Committee (CLIAC)

Federal advisory committee established under Public Health Service Act [42 USC §217a] in 1992

Provides scientific and technical advice regarding

- CLIA regulations
- Impact on medical and laboratory practice
- Modifications to accommodate technological advances
- Reports to HHS Secretary/Assistant Secretary for Health, CDC Director, CMS Administrator, FDA Commissioner
- Managed by CDC Division of Laboratory Science and Standards (DLSS)

CLIA Oversight for Genetic Testing

CLIA regulations

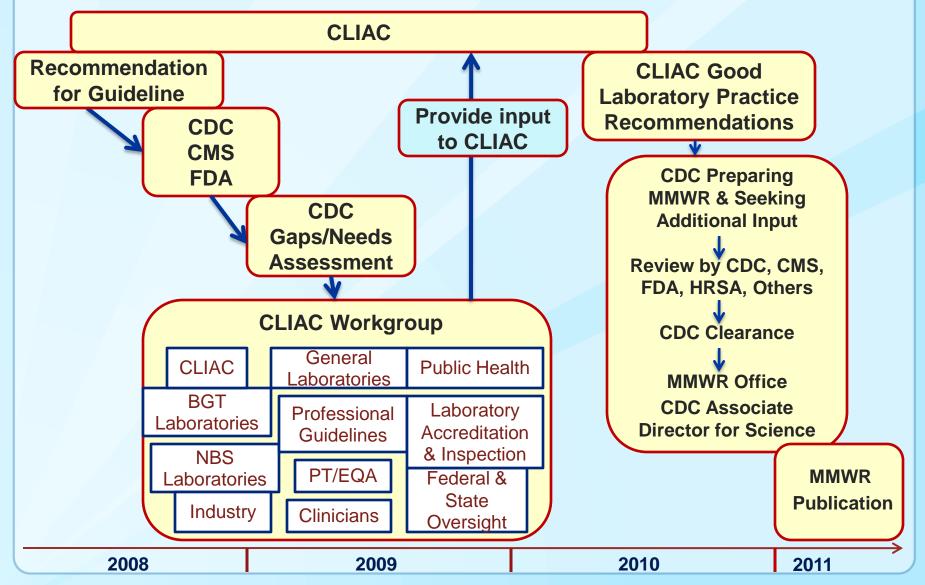
- Apply to all patient testing performed on U.S. patient specimens
- General requirements for non-waived testing as applicable
- Specialty of clinical cytogenetics
 - Specific QC requirements
 - Qualification requirements for technical supervisor
- Requirements for molecular amplification procedures
- No specialty for molecular or biochemical genetic testing
- Emphasize analytic validity rather than clinical validity, no intent to address clinical utility

Accreditation standards and state programs

Developing Good Laboratory Practice Guidance for Genetic Testing

- 1997: Federal agencies working with advisory committees, other stakeholders to consider quality assurance and oversight for genetic testing
- 2007: CMS developed action plan to enhance oversight of genetic testing
 - Providing guidance rather than prescriptive regulations
 - Training, education, data collection, collaboration
- 2008: CLIAC provided recommendations for
 - Good laboratory practices (GLPs) for molecular genetic testing (MGT)
 - Need for separate guidelines to address biochemical and other areas of genetic testing
- 2009: CDC Morbidity and Mortality Weekly Report (MMWR) guideline for MGT

Good Laboratory Practices for Molecular Genetic Testing for Heritable Diseases and Conditions


INSIDE: Continuing Education Examination

CONTENTS

Introduction
Background
CLIA Oversight for Molecular Genetic Testing
Concerns Related to Molecular Genetic Testing
Methods
Information Collection and Assessment
Development of CLIAC Recommendations for Good
Laboratory Practices in Molecular Genetic Testing 6
Recommended Good Laboratory Practices7
The Preanalytic Testing Phase7
The Analytic Testing Phase
The Postanalytic Testing Phase
Laboratory Responsibilities Regarding Authorized Persons 20
Ensuring Confidentiality of Patient Information 21
Personnel Qualifications, Responsibilities,
and Competency Assessments
Considerations Before Introducing Molecular Genetic Testing
or Offering New Molecular Genetic Tests
Quality Management System Approach for
Molecular Genetic Testing
Conclusion
References
Appendix A
Appendix B
Appendix C

Continuing Education	Activity.6	CE-1
0		

Developing MMWR Guideline for Good Laboratory Practices in Biochemical Genetic Testing (BGT) and Newborn Screening (NBS)

Developing Recommendations for Good Laboratory Practices in BGT and NBS

- CDC assessment of BGT landscape and gaps in quality assurance (QA) practices
 - Collection of available information
 - Identification of areas needing QA guidance
 - Assessment of expertise needed for CLIAC workgroup
 - Preparation of information to facilitate workgroup evaluation
- Collaboration with CDC Newborn Screening Quality Assurance Program
- Input from CDC Office of Public Health Genomics

Assessing BGT Landscape and Gaps

Assessment of current BGT landscape and trends

- Definitions
- Number of labs performing BGT
- Number and type of diseases for which BGT is performed
- Test volume
- Test methods and technology
- Type of services
- Availability of proficiency testing (PT)/external quality assessment (EQA) programs
- Growth and trends
- Comprehensive review of available information/data
- QA concerns identified
- Comparison of laboratory standards and guidelines to assess practices/areas needing guidance or clarification

Process of Developing CLIAC-Recommended GLPs for BGT and NBS

- 2009 CLIAC BGT workgroup
 - 13 experts representing key perspectives:
 - BGT laboratories, diverse technology and diagnostic issues
 - NBS/public health
 - Users of laboratory services
 - Federal and state regulatory oversight
 - Laboratory performance evaluation, inspection/accreditation
 - Professional guidelines, voluntary standards
 - IVD manufacturers and industry
 - Workgroup charge: Provide input to CLIAC
 - Scope of CLIAC consideration
 - Comprehensive evaluation of laboratory standards and guidelines
 - Strategies for identified QA concerns and gaps
 - Additional laboratory practices areas/issues needing guidance

Workgroup Evaluation of Laboratory Standards

19 comprehensive crosswalks addressing each topic area needing guidance for good laboratory practices (see example)

For CLIAC BGT Workgroup Review Only. DO NOT REPRODUCE OR DISTRIBUTE. Version 05-27-2009

BGT Crosswalk #7. Performance Establishment and Verification Relating to Genetic Tests

	CLIA Regulations	New York State Clinical Laboratory	FDA Guidance Documents	ISO 15189:2007	CAP Checklists	ACMG Standards & Guidelines	CLSI Guidelines	MGT MMWR
		Standards of Practice						
Analytical	Under §493.1253,	Validation \$1: The	NBS Test Systems for AAs,	5.5.1	Laboratory General L	C8.4.1 Analytic	EP5-A2	1. For performance
performance	CLIA requires	laboratory shall use	FC/ACs Using MS/MS	The laboratory shall	Sound laboratory practice	sensitivity is the	Evaluation of	establishment and
	performance	examination	Provides guidance for	use examinations	requires full characterization	proportion of biological	Precision	verification of new
	verification on	procedures, including	premarket submissions	procedures, including	of an assay before its use	samples that have a	Performance of	molecular genetic
	accuracy, precision,	those for	including:	those for	for patient testing, without	positive test result or	Quantitative	tests, CLIAC
	reference intervals,	selecting/taking sample	 Implications for method 	selecting/taking	regard to when the test was	known mutation and	Measurement	recommends the
	and reportable range	portions appropriate for	validation by laboratories	samples portions,	first introduced by a given	that are correctly	Methods	following 5 steps:
	for each unmodified	the examination, which	that use these procedures-	which meet the needs	laboratory. The laboratory	classified as positive		 Ensure a review is
	FDA-	meet the needs of the	 Reproducibility (within- 	of the users of	must have data on each	(assumes mutation is	EP 17-A	conducted of
	cleared/approved test	users of the laboratory	run and total imprecision)	laboratory services	test's accuracy, precision,	tested for). Analytic	Protocols for	available scientific
	system; and	services.	 Interference (interferents 	and are appropriate	analytic sensitivity,	sensitivity is determined	Determination of	studies and pertinent
	performance	Validation S2: The	on assay performance)	for the examinations.	interferences and reportable	using samples with	Limits of Detection	references;
	establishment for	laboratory shall use only	 Functional Sensitivity/ 	Preferred procedures	range (i.e., analytic	known test results or	and Limits of	 b. Select appropriate
	accuracy, precision,	validated procedures to	Limit of Detection	are those that have	measurement range (AMR)	mutation status, either	Quantitation	test methodology for
	analytical sensitivity,	confirm that the	 Linearity 	been published in	and clinically reportable	by comparison with		the disease or
	analytical specificity,	examination procedures	 Calibration and Control 	established/authoritati	range (CRR)) as applicable.	another methodology or	EP6-A	condition being
	reference intervals,	are suitable for the	Materials	ve textbooks, peer-		by consensus findings	Evaluation of the	evaluated;
	reportable range, and	intended use. The	 Carry over and drift 	reviewed texts or	Laboratories subject to CLIA	(e.g., proficiency testing	Linearity of	 c. Establish or verify
	other applicable	validation shall be as	(evaluate each amino	journals, or in	88: For unmodified FDA-	samples). Estimates	Quantitative	the analytical
	performance	extensive as necessary	acid, free carnitine, and	international, national	cleared or approved tests,	should include	Measurement	performance and
	characteristics for	to meet the needs in the	acylcarnitine for any	or regional guidelines.	the laboratory may use data	confidence intervals.	Procedures: A	determine applicable
	each modified FDA-	given application or field	effects of carry over or	If in-house	from manufacturers'		Statistical Approach	quality control
	cleared/approved test	of application; the	drift using referenced	procedures are used,	information or published	C8.4.2 Analytic		parameters for the
	system or laboratory-	laboratory shall record	material)	they shall be	reports, but the laboratory	specificity is the	EP9-A2	genetic test;
	developed test.	the results obtained and	 Cut-Off(s) / Reference 	appropriately	must verify outside data on	proportion of biological	Method Comparison	 d. Define appropriate
	Laboratories also	the procedure for the	Interval(s)	validated for their	accuracy, precision and	samples that have a	and Bias Estimation	patient populations
	must determine	validation		intended use and fully	reportable range. For tests	negative test result or	Using Patient	for which the test
	control procedures	Validation S3: A	 Method Comparison 	documented.	that are not FDA-cleared or	no identified mutation	Samples	should be performed
	and calibration	laboratory that performs	(compare your device to a		approved, or for FDA-	(being tested for) and		 Ensure test results
	procedures based on	the same test using	predicate device or an	5.5.2	cleared/approved tests	that are correctly	EP7-A2 (Protocol)	and their implication
	the performance	different methods or	acceptable reference	The laboratory shall	modified by the laboratory,	classified as negative.	Interference Testing	can be interpreted
	verification or	instruments, or	Method)	use only validated	the laboratory must establish	Analytic specificity is	in Clinical Chemistry	for a given individual
	establishment.	performs the same test	 Specimen collection and 	procedures for	accuracy, precision, analytic	also determined using		or family, and the
		at multiple test sites,	handling conditions	confirming that the	sensitivity, interferences and	samples with known	C28-A2 (Protocol)	limitations of the test
	Interpretive	shall have a system in	(whether the device can	examination	reportable range, as	test results.	How to Define and	are defined and
	Guidelines	place that evaluates	maintain acceptable	procedures are	applicable; data on	Alternatively, samples	Determine	reported.
	§493.1253(b)(1)	and defines the	performance over the	suitable for the	interferences may be	from the target	Reference Intervals	The number of positive
	The laboratory is	relationship between	recommended storage	intended use. The	obtained from manufacturers	population could be		and negative samples
	responsible for	test results every six	times and temperatures)	validations shall be as	or published literature, as	tested with all positive	MM1-A	that should be included
	verifying the	months	 Drift 	extensive as are	applicable.	results confirmed by	14.3.1	in performance
	performance	Validation S4:	 Sample selection, 	necessary to meet		referent method as	Identify and	establishment and
	specifications of each	Documentation of	inclusion, and exclusion	the needs in the given	GEN.42020 Has the	being true positives.	characterize the	verification should

Process of Developing CLIAC-recommended GLPs for BGT and NBS

- Feb. 2010 CLIAC meeting
 - CLIAC review of workgroup report
 - Recommendations for BGT and NBS for diagnosis and monitoring of inborn errors of metabolism (<u>http://wwwn.cdc.gov/cliac/default.aspx</u>)

 Discussion of CLIAC recommendations and implications for laboratory testing component of newborn screening – Dr. Carol Greene

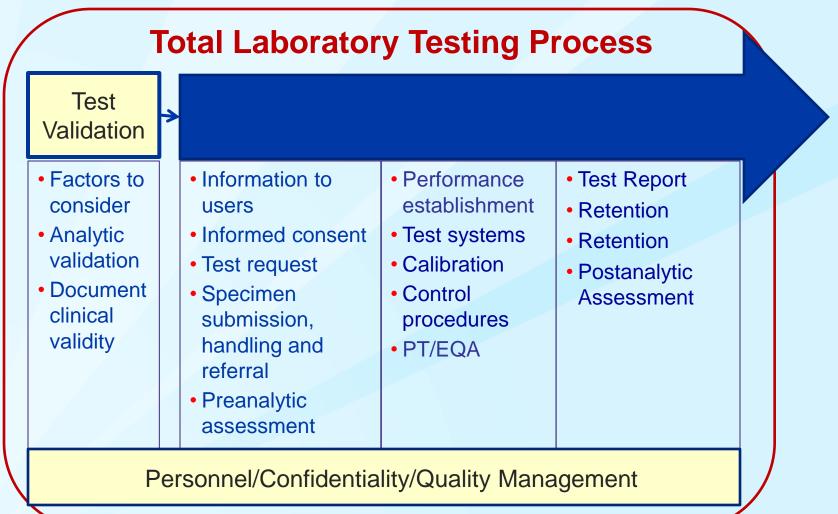
CLIAC Recommendations for Good Laboratory Practices and Implications for Newborn Screening

Carol Greene, MD

President-elect, Society for Inherited Metabolic Disorders Professor of Pediatrics, University of Maryland School of Medicine *Chair, CLIAC Biochemical Genetic Testing Workgroup*

Overview of CLIAC Recommendations

- CLIAC Recommendations for Good Laboratory Practices (GLPs) in Biochemical Genetic Testing (BGT) and Newborn Screening (NBS) for Diagnosis and Monitoring of Inborn Errors of Metabolism (IEM)
 - Scope and applicability
 - Total laboratory testing process (preanalytic, analytic, and postanalytic phases of BGT and NBS)
 - Personnel qualifications, responsibilities, competency
 - Factors to consider when introducing new tests
 - Confidentiality procedures
 - Potential benefits of quality management system approach


Document available at http://wwwn.cdc.gov/cliac/default.aspx

Highlights of CLIAC Recommendations

Scope and Applicability

- Improve quality of laboratory testing for screening, diagnosis and management of IEMs
- Recommended GLPs should apply to:
 - Testing performed by BGT laboratories
 - BGT performed outside of a BGT laboratory
 - NBS performed for IEMs
 - BGT aspects of tests encompassing BGT and other methods
- Examples are provided for:
 - Tests that should be/should not be covered
 - Clarifications for "situational" tests

Highlights of CLIAC Recommendations

Laboratories should provide test information to users -

- Information necessary for selecting appropriate testing
- Information on appropriate collection, handling, and submission of patient samples
- Types of patient information required to perform testing and report results
- Availability of laboratory consultation and discussion
- When indicated, implications of test results for relatives or family members

- Information to be provided for each biochemical genetic test:
 - Intended use (e.g., analyte or nucleic acid target, specimen type, purpose of testing, recommended patient population)
 - Indications for testing
 - Test method to be used
 - Analytic performance specifications, clinical validity, limitations
 - FDA approval or clearance
 - Specimen collection, handling, transport, and submission
 - Types of patient information needed by the laboratory for effective testing, accurate laboratory interpretation and result reporting
 - If applicable, potential that test results could have implications for family members
 - Availability of laboratory consultation and discussion
 - Cost information when possible and practical

✤ Informed consent for BGT –

- Provide users with information necessary to make <u>informed decisions</u> whether informed consent (IC) is required or not
- Unless mandated, obtaining IC for patient testing generally not a laboratory responsibility
- When IC is required, assist in determining appropriate level of IC and include method for documentation on test request forms

Informed consent for NBS -

- Explicit parental consent not necessary for mandated public health NBS if meeting accepted criteria
- New tests not meeting criteria should require explicit consent
- Parental and provider education should be integral to NBS programs regardless of consent requirement
- Research use of tested specimens should have appropriate human subjects protection procedures

- Specimen submission, handling and referral
 - Provide guidance for patient preparation when appropriate
 - Dried blood spot (DBS) specimens should not be batched before being sent to the laboratory
 - Have written criteria for acceptance /rejection of specimens, including handling of non-ideal specimens -
 - Unsatisfactory DBS specimens for NBS
 - If accepting non-ideal specimens, need to document evidence on test performance
 - Use appropriate terminology
 - Refer tests only to CLIA-certified laboratories

- Performance establishment and verification -
 - Ensure adequate establishment/verification of analytic performance
 - Document available information on clinical validity
 - General principles for steps to be taken
 - Performance characteristics to be determined
 - Number of positive and normal samples depends on test and prevalence of disease (but not a low bar for rare disease testing)
 - Use of manufacturer- or literature-provided reference ranges in certain situations (with disclosure and ongoing monitoring/adjustment)
 - "Truth in advertising"

Control procedures

- Use control materials to monitor entire analytic process
- Validate sampling instruments (including automated instruments)
- Perform control procedures each day or with each batch
- Controls should be comprehensive, selected based on patient population, prevalence of the disease, and the purpose of testing
- Acceptable control practices for
 - Time-consuming testing using single-channel/single-column instruments
 - Rare disease assays for which positive controls are difficult to obtain
 - Appropriate alternative control
- Specific analytic issues for BGT and NBS
 - Reagents, standards/reference materials, supplies, equipment
 - Calibration and calibration verification

✤ Proficiency testing (PT) –

- Participate in available PT at least twice per year for each test
- Alternative performance assessments if PT is not available:
 - o Interlaboratory exchange
 - o Use of externally derived materials
 - o Repeat testing of blinded samples
 - o Interlaboratory data comparison

Test reports

- Provide information necessary for accurate understanding and interpretation of test results
- Comply with CLIA general test report requirements
- Retain in same format as the original report (including electronic reports generated in the past)
- Inform or update users when test methods change to meet CLIA requirements*
- Written in language clinically understandable (by nongeneticist health professionals)
- Communicate panic or critical values that indicate possible crisis to the clinician caring for the patient*

* Based on CLIA requirements but more specific

- Test report contents
 - Include all CLIA-required information
 - Additional information to include -
 - Patient name and any other unique identifier*, date of birth
 - Indication for testing when needed for result interpretation
 - Date and time of specimen collection and arrival in the laboratory
 - Name of the referring physician or other authorized individual who ordered the test
 - Interpretive guide (e.g., table or reference to literature or website)
 - Analytes tested and/or type of test method*
 - Performance specifications (including patient-appropriate normal range or reference intervals) and limitations when appropriate
 - Test results in appropriate measurement units* and current recommended standard nomenclature
 - Result interpretation for complex tests, profiles, and testing for carrier status* (Cont.)

* Based on CLIA requirements but more specific

Test report contents (cont.)

- The date and time the test report is released*
- Notation if preliminary report or update/revision to previous report
- Results of other relevant tests that the laboratory performed for the patient if available
- Recommendations for additional testing of patient or for family members where appropriate
- References to the literature
- Recommendation for consultation with a genetic professional (when appropriate and indicated)
- For any in-house developed test using any analyte-specific reagent (ASR), provide the statement required by 21 CFR 809.30(e):
 - "This test was developed and its performance characteristics determined by (Laboratory Name). It has not been cleared or approved by the U.S. Food and Drug Administration."**
- Signature of personnel who reviewed the test results and provided the result interpretation
 - * Based on CLIA requirements but more specific
 - ** Required by FDA

- Retention of test reports, records, and tested specimens
 - Test reports indicating genotypes: At least 21 years
 - Test records: CLIA and other applicable requirements
 - Tested specimens:
 - Longest possible timeframe as permitted by sample stability/integrity, technology, space, cost
 - BGT: At least until after final result reporting; if possible until next PT or alternative performance assessment
 - NBS: Subject to federal, state, local requirements

CLIAC Recommendations for Laboratory Personnel Qualifications & Responsibilities

Laboratory directors:

Meet CLIA requirements for high complexity testing

Technical supervisors for BGT:

- Equivalent qualifications to CLIA requirements for clinical cytogenetics technical supervisors; or
- Current certification in BGT by an HHS-approved board
- Equivalent to recommended qualifications in MMWR for molecular genetic testing

CLIAC Recommendations for Laboratory Personnel Qualifications & Responsibilities

- Technical supervisors for public health NBS:
 - CLIA requirements for high complexity testing
 - Four years of laboratory training or experience in NBS
 - Recommend CMS-approved board certification
 - Meet any additional state requirements
- General supervisors for BGT:
 - Baccalaureate degree or above
 - 2 years training/experience
- Clinical consultants & testing personnel:
 - Meet CLIA qualifications
 - Relevant training/experience

Laboratory Considerations Before Introducing New Genetic Tests

- Factors to be considered:
 - All aspects of recommended GLPs
 - Laboratory management issues:
 - Benefits to patient care, needs/demands, cost/costeffectiveness, (if applicable) intellectual property issues
 - Regulatory compliance
 - Personnel and training
 - Test validation, procedure manual, facility, safety
 - Special issues in NBS at the federal and state levels (including need for and availability of follow-up tests)

Consider professional guidelines and recommendations

Potential Benefits of Quality Management System (QMS)

Quality management/quality assessment principles should be stressed throughout the prospective guideline

QMS policies/procedures may be helpful for:

- Assess user needs to determine effective ways for providing test information
- Specimen submission
- Test requisitions
- Determine media, format, style, and language for test reports
- Considerations before introducing or offering new genetic tests
- May help BGT laboratories improve quality and delivery of laboratory services

Development of CDC Guideline for Good Laboratory Practices and Issues for SACHDNC Input

Bin Chen, PhD

Office of Surveillance, Epidemiology and Laboratory Services Centers for Disease Control and Prevention

CDC Preparation of MMWR Guideline for BGT and NBS

- Provide recommended practices to
 - Clarify applicable CLIA requirements
 - Address need for quality assurance measures in addition to CLIA
- Input solicited to complement CLIAC recommendations
 - Secretary's Advisory Committee for Genetics, Health, and Society (SACGHS)
 - Secretary's Advisory Committee for Heritable Diseases in Newborns and Children (SACHDNC)
 - Association of Public Health Laboratories
- MMWR guidelines intend to
 - Improve quality of laboratory genetic services
 - Enhance oversight for genetic testing under the current regulatory framework
 - Improve healthcare outcomes from genetic testing

Acknowledgements

CLIAC

CLIAC MGT Workgroup

Carol L. Greene, MD – Chair Andrea Ferreira-Gonzalez, PhD Carolyn Sue Richards, PhD Thomas Williams, MD

CLIAC BGT Workgroup

Carol L. Greene, MD – Chair Joel Charrow, MD Julie Ann Neidich, MD Erin Strovel, PhD Emily Winn-Deen, PhD

CMS representatives Penny Keller

FDA representatives

Alberto Gutierrez, PhD

CDC participants

Nancy Anderson Bin Chen Devery Howerton Angela Ragin Hui Zhou D. Joe Boone Carla Cuthbert Lisa Kalman Shahram Shahangian

Diane Bosse Victor De Jesus Debra Kuehl Irene Williams Roberta Carey MariBeth Gagnon

Elizabeth Mansfield, PhD

MariBeth Gagnon Joanne Mei Barbara Zehnbauer

Michele Caggana, ScD Timothy J. O'Leary, MD, PhD Lawrence Silverman, PhD Jean Amos-Wilson, PhD

Bruce Barshop, MD, PhD Tina Cowan, PhD Stephen Raab, MD V. Reid Sutton, MD Tina Cowan, PhD Victoria M. Pratt, PhD Gail H. Vance, MD Emily S. Winn-Deen, PhD

Michele Caggana, ScD Harry Hannon, PhD David Smalley, PhD Georgirene Vladutiu, PhD

Judith Yost

Ronalda Leneau

Kellie Kelm, PhD

Topics for SACHDNC Input

- Considering the CLIAC recommendations, are there issues that CDC should explain or clarify for the NBS laboratory community or BGT laboratories in the upcoming MMWR document?
- Are there additional issues that CDC should address in the MMWR guideline pertaining to NBS laboratory practice? If so, can SACHDNC provide recommendations in these areas?
- How should we encourage implementation of the recommended practices once the MMWR guideline is published? What efforts should be taken and who should be reached as partners or collaborators to help with these efforts?

Thank You!

For questions please contact:

Bin Chen, PhD Centers for Disease Control and Prevention <u>bkc1@cdc.gov</u> (404) 498-2228

For more information please contact Centers for Disease Control and Prevention

1600 Clifton Road NE, Atlanta, GA 30333 Telephone, 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348 E-mail: cdcinfo@cdc.gov Web: www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Office of Surveillance, Epidemiology, and Laboratory Services