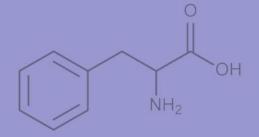


NIH PKU Conference: State of the Science and Future **Research Needs**

Melissa A. Parisi Eunice Kennedy Shriver National Institute of Child Health and Human Development



NIH...Turning Discovery into Health

HENYLKETONURIA SCIENTIFIC REVIEW CONFERENCE:

State of the Science and Future Research Needs

Background

- October 2000: NIH published guidelines for screening and management as the result of a Consensus Development Conference on PKU
- New therapies have emerged:
 - Sapropterin dihydrochloride, LNAAs, GMP
 - New data have been collected from additional studies
 - → The guidelines needed to be revisited
- Approach: Year-long Working Group process and Conference held Feb. 22-23, 2012

New Medication: Sapropterin dihydrochloride (Kuvan®)

- Synthetic form of BH4, the cofactor for the PAH enzyme
- FDA approval in December 2007 granted to BioMarin
 - Based on 4 studies in 579 patients, 4-49 yrs old
- Mechanism: increases activity of PAH enzyme in those with residual enzyme function
- Indications:
 - BH4-responsive PKU
 - No age restriction
 - For use in combination with a Phe-restricted diet
 - Requires frequent monitoring of blood Phe levels and recommended diet management with dietitian

NIH PKU Scientific Review Conference February 22-23, 2012

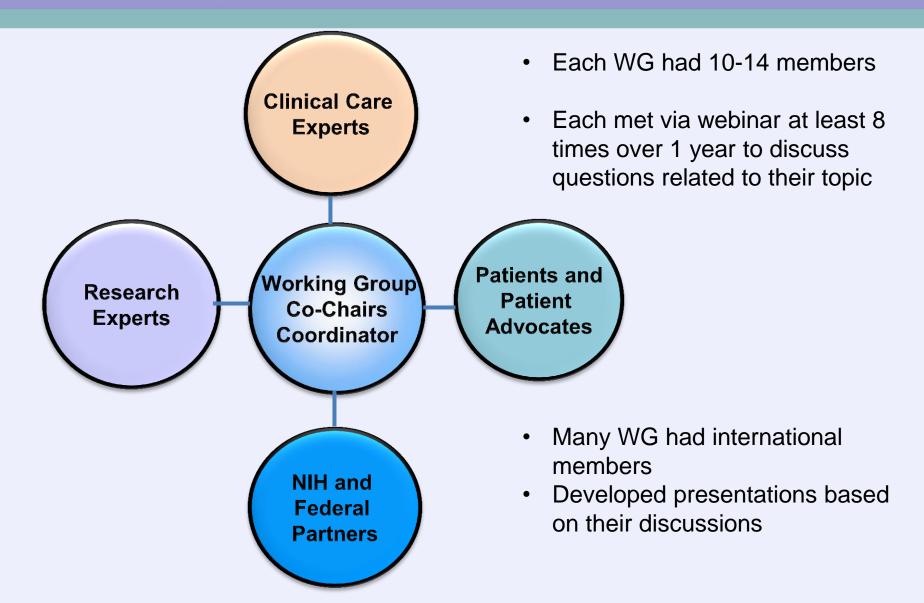
Components:

- AHRQ Comparative Effectiveness Review
 - Adjuvant Treatments for PKU
- Five NIH Working Groups presented their findings
- Invited speaker presentations
- Advocacy, industry, and other interested parties

Conference goals:

- Provide a forum for identifying future research needs
- Provide data for the development of clinical practice guidelines by professional organizations

AHRQ conducted a formal evidence review of the scientific literature


- AHRQ received a public request to conduct a comparative effectiveness review of treatments for PKU, including diet, sapropterin, and LNAAs
- An Evidence-based Practice Committee (EPC) was identified
- This effort proceeded collaboratively with, but independently of, NIH process
- AHRQ draft report was posted September 2011, formally released at Conference

* AHRQ EPC Evidence Review: Key Points

- Phe Levels and IQ
 - Standard of care target Phe <360 µmol/L is supported
 - Phe levels during the critical period (0-6 yrs) are especially influential on later IQ, but Phe levels after the critical period continue to affect IQ with age
- Dietary management remains the mainstay of treatment for PKU; however, some individuals may benefit from adjuvant therapy with sapropterin
- Sapropterin reduced Phe levels in 2 RCTs and 3 open label trials, significantly greater reductions seen in treated versus placebo groups
- Long term data to understand effects of sapropterin on cognition, quality of life, nutritional outcomes are unavailable
- Potential modifiers of treatment effectiveness and treatment responsiveness not well understood
- Need for large, rigorous RCTs of sapropterin and LNAAs

Preparation for the NIH Conference: Working Groups

5 Working Groups were convened to address overarching themes

- 1. Long-Term Outcomes and Management across the Lifespan: What evidence and practices should inform management of individuals with PKU over their lifespan?
- 2. PKU and Pregnancy: What are the considerations for management for women of reproductive age, focusing on preconception care, conception planning, pregnancy, and the postpartum period?
- 3. Diet Control and Management: Should the dietary recommendations that emerged from the 2000 Consensus Statement be changed? If so, what current knowledge would inform development of new recommendations?
- **4. Pharmacologic Interventions**: What is the role of sapropterin dihydrochloride in individuals with PKU?
- 5. Molecular Testing, New Technologies, and Epidemiologic Considerations: Should there be any changes to the 2000 Consensus Conference Statement regarding newborn screening and molecular testing for PKU?

Summary Points from the Working Groups

- Lifelong treatment for PKU is essential
- The critical elements of medical, nutritional, cognitive, emotional, behavioral, and social management of PKU throughout the lifespan, including pregnancy, were identified and refined
- Optimal management is essential to prevent maternal PKU syndrome
- Double-blind, placebo controlled studies have the greatest rigor for determining responsiveness to sapropterin
- Genotyping is valuable for categorization of severity of PKU and for prediction of responsiveness to sapropterin
- Insurance issues and psychosocial factors influence access to and compliance with nutritional and other therapies
- There is a critical need for more treatment options for individuals with no or minimal PAH enzyme activity
- Revised practice guidelines need to be developed

Screening for and Measuring Outcomes Across the Lifespan

DOMAIN	Infant-	School	Adolescent/	Early	Middle	Later
	Toddler	Age	Transition	Adulthood	Adulthood	Adulthood
	(3 mo - 5 yr)	(6 - 11 yr)	(12 - 17 yr)	(18 - 25 yr)	(26 - 49 yr)	(≥50 yr)
Medical	Issue 1:					
	General	General	General	General	General	General
	health	health	health	health	health	health
	Measure 1:					
	Medical	Medical	Medical	Medical	Medical	Medical
	•	examination;	1	examination;	•	examination;
	medical	medical	medical	medical	medical	medical
	history	history		history; bone	•	•
			density	density	density	density
Nutritional	Workgroup 1					
Metabolic	Issue 1:					
	Phe level					
	Measure 1:					
	Serum Phe					
Neurological	Issue 1:					
	Tremor; gait;					
	strength;	strength;	strength;	strength;	strength;	strength;
		reflexes	reflexes	reflexes	reflexes	reflexes
	Measure 1:					
	Neurological	Neurological		Neurological	Neurological	Neurological
	examination	examination	examination	examination	examination	examination

Screening for and Measuring Outcomes Across the Lifespan

DOMAIN	Infant-	School	Adolescent/	Early	Middle	Later
	Toddler	Age	Transition	Adulthood	Adulthood	Adulthood
	(3 mo - 5 yr)	(6 - 11 yr)	(12 - 17 yr)	(18 - 25 yr)	(26 - 49 yr)	(≥50 yr)
	Issue 1:	Issue 1:	Issue 1:	Issue 1:	Issue 1:	Issue 1:
	General	General	General	General	General	General
	cognition	cognition	cognition	cognition	cognition	cognition
	Measure 1a:	Measure 1:	Measure 1:	Measure 1:	Measure 1:	Measure 1:
	Bayley III	WASI	WASI	WASI	WASI	WASI
	Measure 1b:					
	WPPSI-III					
	Issue 2:	Issue 2:	Issue 2:	Issue 2:	Issue 2:	Issue 2:
	Executive	Executive	Executive	Executive	Executive	Executive
Cognitive	abilities	abilities	abilities	abilities	abilities	abilities
	Measure 2:	Measure 2:	Measure 2:	Measure 2:	Measure 2:	Measure 2:
	BRIEF-P	BRIEF	BRIEF	BRIEF-A	BRIEF-A	BRIEF-A
	Issue 3:	Issue 3:	Issue 3:	Issue 3:	Issue 3:	Issue 3:
	Academic	Academic	Academic	Academic	Academic	Academic
						Achievement
	Measure 3:	Measure 3:	Measure 3:	Measure 3:	Measure 3:	Measure 3:
	Discuss early	Standard	Standard	Standard	Highest	Highest
	skills	scores;	scores;	scores;	education	education
		discuss	discuss	discuss	level attained	level attained
		progress	progress	progress		

Screening for and Measuring Outcomes Across the Lifespan

	Infant-	School	Adolescent/	Early	Middle	Later
DOMAIN	Toddler	Age	Transition	Adulthood	Adulthood	Adulthood
	(3 mo - 5 yr)	(6 - 11 yr)	(12 - 17 yr)	(18 - 25 yr)	(26 - 49 yr)	(≥50 yr)
	Issue 1:	Issue 1:	Issue 1:	Issue 1:	Issue 1:	Issue 1:
	Behavioral,	Behavioral,	Behavioral,	Behavioral,	Behavioral,	Behavioral,
	emotional,	emotional,	emotional,	emotional,	emotional,	emotional,
	social	social	social	social	social	social
	Measure 1:	Measure 1:	Measure 1:	Measure 1:	Measure 1:	Measure 1:
	BASC-2 or	BASC-2 or	BASC-2 or	BSI or BDI-2/	BSI or BDI-2/	BSI or BDI-2/
Behavioral,	CBCL	CBCL	CBCL	BAI	BAI	BAI
Emotional,	Issue 2:	Issue 2:	Issue 2:	Issue 2:	Issue 2:	Issue 2:
Social	Adaptive	Adaptive	Adaptive	Adaptive	Adaptive	Adaptive
	function	function	function	function	function	function
	Measure 2:	Measure 2:	Measure 2:	Measure 2:	Measure 2:	Measure 2:
	ABAS-II	ABAS-II	ABAS-II;	ABAS-II;	ABAS-II;	ABAS-II;
			discuss	discuss	discuss	discuss
			pregnancy	pregnancy	pregnancy;	social issues
			with teens		discuss	
					social issues	

Novel Therapies for PKU-Cary Harding

Gene Therapy:

- Current preclinical trials in mice
- Need high doses of recombinant AAV-PAH
- Integration into liver cells inefficient

PEG-PAL (PEGylated Phenylalanine Ammonia Lyase):

- No cofactor required
- Relatively stable
- Non-toxic metabolite is excreted in urine
- PEGylation reduces but doesn't eliminate immunogenicity
- Current Phase 2 trials in humans are promising

NIH...Turning Discovery into Health

Major Themes Identified

- Outcomes/Measures:
- What measures can be used as screening tools and assessments (in all domains of function) across the lifespan for those with PKU?
- What are appropriate and sensitive short-term and long-term outcome measures for identifying effects of interventions for individuals with PKU?
- Basic science/Neurological Effects:
- What is the mechanism of neurotoxicity of elevated Phe levels?
- Are there any promising biomarkers on the horizon that might be valuable for monitoring PKU, its neurological effects, and response to therapy?

Major Themes, cont'd.

- Access/Social Supports:
- What are the social support systems that facilitate the best clinical outcomes for individuals with PKU?
- What strategies can be used to overcome barriers and improve adherence to treatments in all phases of life?
- What types of implementation research (e.g., comparative studies between countries) could demonstrate the value of treatments?
- Clinical Trial Design:
- Which individuals should be eligible for new treatments for PKU, and what are the best methods to study responsiveness?
- What should be the guiding principles when designing clinical trials for pharmacologic agents or combinations of therapies (including diet) to be used in PKU?

Major Themes, cont'd.

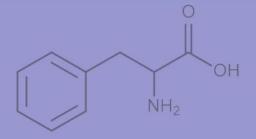
- Genotyping:
- Can genotyping be used to determine responsiveness to therapies?
 Should clinical trials for efficacy always incorporate genotype information?
- Given that PKU exhibits phenotypic variability, what is the role of modifier genes in PKU?
- Resources/Technology:
- Is there a role for a national PKU registry of individuals to inform future clinical trials and natural history studies?
- Can resources that have been developed for other rare diseases be used by the PKU community (e.g., Newborn Screening Translational Research Network, Common Data Elements)?
- Can the technology for home Phe monitoring be developed to facilitate disease management?

NIH PKU Scientific Conference: What's Next?

- White paper in development
- Conference webcast available on NIH videocast site
- Conference summary documents available:
 https://www.team-share.net/Phenylketonuria_Scientific_Review_Conference-webcast.aspx
- For more information, contact:
 - Melissa Parisi at parisima@mail.nih.gov

Thank You!

If you have questions/comments about the conference, please send them to parisima@mail.nih.gov



NIH...Turning Discovery into Health

PHENYLKETONURIA SCIENTIFIC REVIEW CONFERENCE:

State of the Science and Future Research Needs

