

Newborn Screening for MPS I Disease: Condition Review Update

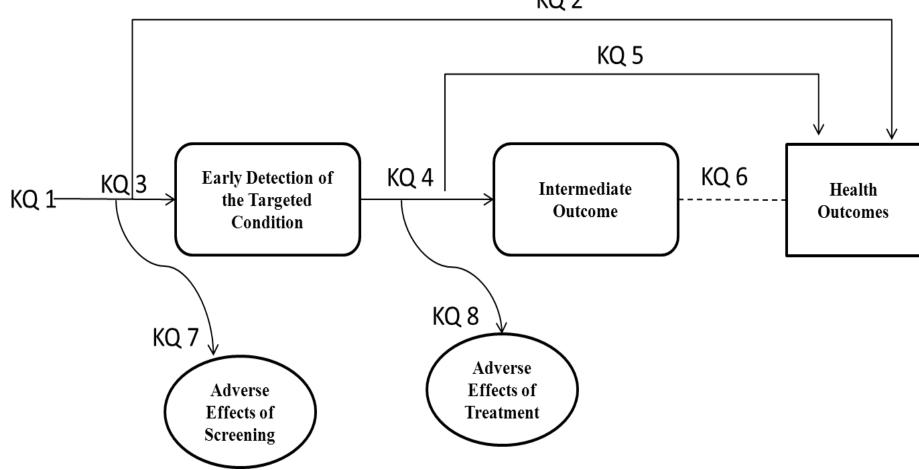
Alex R. Kemper, MD, MPH, MS

September 20, 2013

Condition Review Workgroup (CRW)

CRW Members	Role	Institution
Alex R. Kemper, MD, MPH, MS	Chair	Duke University
Anne M. Comeau, PhD	State NBS Public Health Program	New England NBS Program, University of Mass Medical School
Aaron Goldenberg, PhD, MPH	NBS Bioethicist	Center for Genetic Research Ethics & Law, Case Western University
Nancy S. Green, MD	Nomination & Prioritization Workgroup Liaison	Department of Pediatrics, Columbia University Medical Center
Scott Grosse, PhD	Federal Advisor; NBS Expert	CDC
Jelili Ojodu, MPH	Public Health Impact Task Leader	NBS & Genetics, Association of Public Health Laboratories
Lisa Prosser, PhD	Decision Analysis Leader, NBS Health Economist	Health Management & Policy/ SPH; Pediatrics/Univ of Michigan Med School
Susan Tanksley, PhD	State NBS Public Health Program	Newborn Screening Laboratory TX Department of State Health Services
K.K. Lam, PhD	Project Leader	Duke University

Condition Review Workgroup Updates


- Revised Conceptual Framework of NBS Impact
- MPS I Condition Review
 - Technical Expert Panel
 - Teleconference 1 to Refine Scope of Review
 - Case Definition
 - Newborn Screening & Diagnosis Procedures
 - Key Questions
 - Key Sources of Information
 - Developed Evidence Review Protocol
 - Conducted Initial Systematic Literature Search

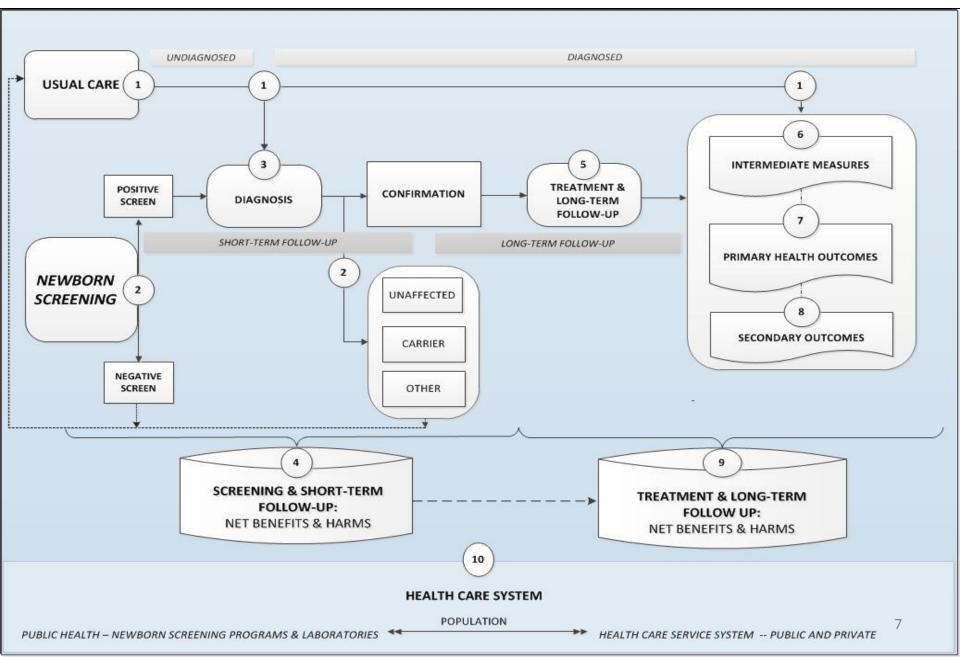
4

The Model Formerly Known As...

Figure 1. Analytic Framework for the Systematic Evidence Review

KQ 2

(Old) Key Questions


- KQ1: What is the **life course and spectrum of disease** related to the condition?
- KQ2: What is the direct evidence that screening for the condition improves health outcomes?
- KQ3: What is the <u>analytic validity and clinical validity of the</u> <u>screening test</u> or algorithm and the diagnostic test?
- KQ4: Are <u>treatments</u> available that make a difference in <u>intermediate outcomes</u> when the condition is caught early?
- KQ5: Are <u>treatments</u> available that make a difference in <u>health</u> <u>outcomes</u> when the condition is caught early?
- KQ6: How strong is the **association** between intermediate outcomes and health outcomes?
- KQ7: What are the **harms associated with screening**?
- KQ8: What are the **harms associated with treatment**?

Conceptual Framework of NBS Impact-Revised

- Goal to ensure comprehensive consideration of all key aspects of benefits and harms
- Key topic questions (KTQs) are groupings of relevant questions
- Integrates across the three report types (evidence review, modeling of expected benefit and harm, assessment of public health system)

Conceptual Framework: Effects of NBS for MPS I

Key Topic Questions

- 1. Usual Care and Course
- 2. Screening and Short-Term Follow-Up
- 3. Diagnosis
- 4. Benefits & Harms Screening & Diagnosis (unrelated to treatment)
- 5. Treatment and Long-Term Follow-up
- 6. Intermediate Outcome Measures
- 7. Primary Health Outcomes (Patient)
- 8. Secondary Outcomes (Patient, Caregivers)
- 9. Benefits & Harms Treatment & Long-Term Follow-up
- **10. Health Care System**

KTQ 1: Usual Care and Course

- What is the incidence of clinically detected MPS I in the United States?
- What is the distribution of MPS I forms?
- What is the incidence of pseudodeficiency?
- What is the average age of symptom onset, diagnosis, and treatment initiation for each form of MPS 1?

KTQ 2: Screening and Short-Term Follow Up

- What analytic markers are associated with MPS I that can be used in population-based screening?
- What screening tests can be used to find these markers?
- What is the analytic validity of the screening tests for MPS I? If the marker is present in dried-blood spots, will it be found?
- What is the clinical validity of available screening test algorithms in driedblood spots?
- If a screening test is positive, how likely is it the child has MPS I (e.g., what is the expected "positive predictive value" [PPV] in newborn screening)?
- Are those most likely to benefit from early treatment identified by screening?
- Can screening predict the form of MPS 1, carrier status, or pseudodeficiency?
- Has the screening test algorithm been evaluated prospectively to generate an understanding of the likely numbers and types of screening results?
- Is there a method of MPS I screening quality assurance and proficiency testing available for screening laboratories?

KTQ 3: Diagnosis

- What is the case definition?
- What approaches are available to diagnose MPS I in newborns? What approaches are available to diagnose MPS I in older children?
- How are each of the forms of MPS I identified? How is carrier status identified? How is pseudodeficiency identified? Is there agreement on the diagnostic approaches? Are there quality assurance programs available for, for example, proficiency testing of diagnostic laboratories?
- How long does it take to establish the diagnosis? How long does it take to rule out the diagnosis?
- What other specific factors that may affect treatment plans or outcomes must be evaluated during the diagnostic period?

KTQ 4: Benefits & Harms of Screening and Diagnosis (unrelated to treatment)

- What benefits to the child or the family are associated with presymptomatic identification of MPS I independent of the timing of treatment?
- To what extent does newborn screening change the observed incidence or spectrum of MPS I compared to clinical detection?
- What physical and psychosocial harms are associated with other screening outcomes?
 - false-negative newborn screen for MPS I?
 - false-positive newborn screen for MPS I (i.e., unaffected with MPS I and has a positive screen)?
 - MPS I carrier status?
 - Pseudodeficiency?
- Does screening for MPS I detect other conditions?
- What harms are associated with diagnosis and diagnostic process of each form of MPS I when detected through newborn screening (i.e., severe and attenuated forms)?
- What strategies can minimize these harms?

KTQ 5: Treatment and Long-Term Follow-up

- What are the standard of care treatment strategies for each form of MPS I?
- What clinical guidelines are available for long-term follow-up of each form of MPS I?

KTQ 6: Intermediate Outcome Measures

- What intermediate or proximal outcome measures, biomarkers (e.g., urine GAGs) or functional tests (e.g., echocardiograms, neurodevelopmental tests), can be used to monitor and evaluate the status of MPS I?
- Do interventions for MPS I detected through newborn screening lead to improvement in intermediate measures compared to clinical detection?
- Other than age of initiation, what other factors modify the effect of treatment on intermediate measures?

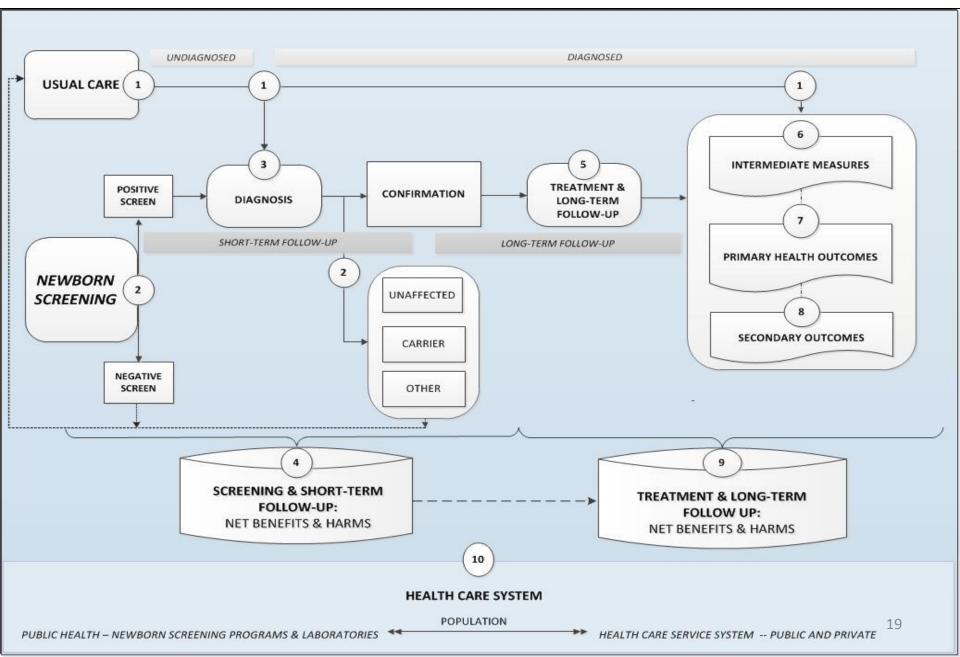
KTQ 7: Primary Health Outcomes

- What are the most important primary health outcomes related to treatment of each form of MPS I identified by
 - usual care?
 - *newborn screening?*
- Other than age of initiation, what factors modify the effect of treatment on primary health outcomes?
- How strongly are the intermediate measures associated with primary outcomes? Do the intermediate measures predict the time course of primary health outcomes?
- What influences the association between intermediate measures and primary outcomes?

KTQ 8: Secondary Outcomes

- What is the quality of life over time associated with the different forms of MPS I when identified through
 - usual care?
 - newborn screening?
- What are the family or caregiver impacts over time associated with different forms of MPS I when identified through
 - usual care?
 - newborn screening?

KTQ 9: Benefits & Harms—Treatment & Long-Term Follow-up


- Do interventions for MPS I detected through newborn screening lead to
 - improvements in primary or secondary outcomes compared to clinical detection (benefits) [e.g., delay or prevent]?
 - worsening of primary or secondary outcomes compared to clinical detection (harms) [e.g., hasten or precipitate]?
- Are there strategies that can improve these benefits or decrease or delay these harms?
- To what degree does improvement in a primary or secondary outcome for MPS I lead to another outcome that may be considered a harm?

KTQ 10: Health Care System

- How many newborns are projected to be affected by newborn screening for MPS I (and may require short- or long-term follow-up services for any MPS I form)?
 - True and false positive cases?
 - True and false negative cases?
- What resources are required to ensure readiness and feasibility of states' NBS programs to adopt screening and follow-up services for MPS I?
- What resources are required to ensure capacity of health service delivery system for short- or long-term follow-up resulting from expanded newborn screening (diagnosis, treatment, follow up)?
- What is the availability and accessibility of these required screening, diagnostic and treatment resources?

Conceptual Framework: Effects of NBS for MPS I

MPS I Technical Expert Panel (TEP)

TEP Members		Institution
Barbara K. Burton, MD	Professor of Pediatrics Director	Northwestern Univ Feinberg School of Medicine Phenylketonuria Treatment Program Lurie Children's Hospital of Chicago
Lorne A. Clarke, MD	Professor of Medical Genetics Medical Director MPS Scientific Advisory Board	Department of Medical Genetics Provincial Medical Genetics Program National MPS Society Child & Family Research Institute University of British Columbia
Patricia Dickson, MD	Chief Associate Professor of Pediatrics	Division of Medical Genetics Department of Pediatrics Los Angeles County – Harbor UCLA Medical Center
Joseph Muenzer, MD, PhD	Professor of Pediatrics Professor of Genetics	Department of Pediatrics Genetics and Metabolism Clinic University of North Carolina School of Medicine
Barbara Wedehase, MSW, CGC (MPS I lead nominator)	Executive Director	National MPS Society

Technical Expert Panel Teleconference 1

Sept 9, 2013

Aims

- Refine case definition
- Delineate usual care screening, diagnosis process
- Review current standard-of-care treatments and clinical management guidelines -- major benefits, limits, harms
- Identify key informants, sources of information, and emerging clinical research areas

MPS I: Case Definition

- Autosomal recessive lysosomal storage disorder (LSD) caused by deficiency of enzyme α -L-iduronidase (IDUA)
- Progressive, multisystem disorder
- Traditionally classified into three syndromes
 - Hurler; Hurler-Scheie; Scheie
 - However, symptoms suggest spectrum of disease severity
- Current characterizations reflect presentation, severity, and treatment options:
 - Severe (Hurler)
 - Attenuated Forms (Hurler-Scheie; Scheie)

Severe MPS I

- Infants appear normal at birth, onset in first year.
- Rapidly progressing
- Central nervous system (CNS) involvement
- Severe cognitive deficits
- Progressive skeletal dysplasia involving all bones

Typical Natural Course	
Age	Symptom Presentation
< 1 year	Non-specific manifestations (hernia, respiratory infections)
> 1 year	Facial features coarsen Lower spine deformity
> 3 years	Linear growth stops Progressive and profound intellectual disability Hearing loss
> 10 years	Death due to cardiorespiratory failure, neurodegeneration

Attenuated MPS I

- Heterogeneous disease presentation, onset, and severity
- Symptom onset usually before age 5 years.
- Slower and more variable progression than Severe MPS I
- Multisystem disease manifestations similar to Severe MPS I, though more variable presentation.
 - Variable CNS/neurologic involvement
 - Cognitive deficits/learning disabilities
 - Hearing loss, cardiac valvular disease, joint manifestations
 - Difficult to diagnose
- Life span ranges from 20 30s to normal life span

Estimated Birth Prevalence

- Sample: 106,526 anonymous DBS from CA
- Cannot distinguish form (i.e., severe vs. attenuated)
- Not the same as population epidemiology

MPS I Screening Results		
	Estimate	95% Confidence Interval
Estimated Prevalence	1 in 35,700	1/11,100 — 1/143,000
Positive Predictive Value	0.33	0.08 - 0.65
3 MPS I "True Positives"		
False Positives	1 in 17,750	1/7,250 – 1/31,900
 6 "False-Positives" 1 carrier 2 poor punch 3 low IDUA, normal alleles 		
Scott et al., 2013		

MPS I: Natural Course with Clinical Detection

Table 1. Median years of age (range) of onset, diagnosis, and death for MPS I Registry patients [N=891].

·					
	Total number [#] (%)	Onset	Diagnosis	Treatment Initiation	Death [# (%)]
Severe MPS I		0.5	0.8	1.4	3.8
(Hurler)	[508] (57)	(0-6.5) [485]	(0-23.8) [508]	(0.1-31.2) [438]	(0.4-27.2) [156 (30.7)]
Attenuated MPS I		1.9	3.8	8.6	17.4
(Hurler-Scheie)	[209] (23.5)	(0-12.4)	(0-38.7)	(0.3-47.2)	(7.5-30.3)
		[187]	[209]	[197]	[16 (7.7)]
(Scheie)		5.4	9.4	17.1	29
	[97] (10.9)	(0-33.8)	(0-54.1)	(3.1-62.9)	(17.4-46.6)
		[87]	[97]	[85]	[4 (4.1)]
Undetermined		0.8	1.3	2.9	5.1
	[28] (3.1)	(0.1-7.2)	(0-43.9)	(0.3-44)	(1.8-9.7)
		[24]	[28]	[23]	[4 (14.3)]

D'Aco et al., 2012

MPS I Screening and Diagnosis

1. NEWBORN SCREENING - DBS

a. Enzyme Assay for IDUA activity level (MS/MS, Lumina, Digital Microfluidics)

Normal IDUA (>5%) \rightarrow Negative Screen $\rightarrow \bullet$ Low IDUA activity (<5%)</th> \rightarrow Positive Screen $\rightarrow \rightarrow \rightarrow$ Short-Term Follow Up

2. SHORT-TERM FOLLOW UP (2nd sample - blood, fibroblasts)

- a. Confirm low IDUA
- **b.** Glycosaminoglycan (GAG) test (urine or serum)
 - Non-elevated GAG \rightarrow pseudodeficiency or false-positive screen $\rightarrow \bullet$ Elevated GAG $\rightarrow MPS I$ $\rightarrow \rightarrow Peferral$
- c. Mutation Analysis

3. MPS I – confirmation:

- a. IDUA < 5%, and
- b. Elevated GAG levels
- c. Mutation analysis (can, but does not always, inform MPS I phenotype)
- ⇒ Refer for multisystem clinical evaluation.
- ⇒ Treatment initiation and follow up based on evaluation results and phenotype information from mutation analysis, if available.

MPS I Treatment Options

Hematopoietic stem cell transplantation (HSCT)

- Standard of Care for Severe MPS I
- Early in disease course is considered to be better
- *Mortality from HSCT ~10%*
- *Morbidity includes acute or chronic GVHD*
- ERT may be used prior to HSCT to stabilize; studies still underway to fully evaluate this approach
- The critical window for HSCT may be up to 2 or 3 months of age.

MPS I Treatment Options

Enzyme replacement therapy (ERT)

- Recombinant human IDUA (Laronidase; Genzyme) FDA-approved in 2003
- Indicated for Attenuated MPS I; and Severe MPS I when HSCT declined or contraindicated
- Treatment = lifelong; weekly IV infusions, generally well-tolerated. Infusion associated reactions mild and common in first 6 months; do not require intervention
- Limitation: ERT does NOT cross the blood-brain barrier (BBB), cannot treat CNS involvement.

MPS I Treatment: Moderating Factors

- Disease symptoms and progression at time of HSCT and ERT initiation is main factor influencing outcomes.
- Earlier initiation (e.g., <1 year, ERT and HSCT) recommended to arrest/prevent CNS involvement
- Supplemental interventions for specific disease complications (e.g., corneal transplant, joint replacement, spinal fusion, BiPAP)
- Experimental studies for Intrathecal ERT to cross BBB
- CRIM status is not a concern

Expert Opinion, MPS I TEP

If MPS I detected earlier through newborn screening...

- Hypothesized that earlier initiation of treatment (both HSCT and ERT) will improve outcomes.
- May allow later decreases in ERT dosage.
- Timing of treatment for pre-symptomatic patients. Currently, treatment initiation indicated by presentation of clinical signs/symptoms. How to determine which symptom criteria/clinical signs to indicate treatment initiation is unclear and varies by providers.

Initial Literature Search

- PubMed, EMBASE, CINAHL (1966 August 2013)
 - PubMed: 1575 abstracts
 - EMBASE: 666
 - CIHAHL: 68 abstracts

- MeSH Terms/Associated key words:

- Mucopolysaccharidosis type I (MPS I)
- Hurler syndrome/disease
- Hurler-Scheie syndrome/disease
- Scheie syndrome/disease
- Severe MPS 1
- Attenuated MPS 1
- Glycosaminoglycan (GAG)
- Alpha-L-iduronidase enzyme

Initial Abstract and Title Screening (August 2013)

Screening Criteria

Inclusions:	Relevant to key questions
	All study designs (n ≥ 1)
	English language abstracts
Exclusions:	Non-human studies
	Non-English or no abstract available
	No new empirical data/analyses

- Two independent reviewers
- Discussion and/or 3rd reviewer to resolve conflicts

Grey Literature Search

MPS/LSD Specific

- National MPS Society
- MPS Research Lab (UCLA-Harbor; PI: Dickson)
- MPS I Registry/(Genzyme) Lysosomal Disease Network
- NIH Rare Diseases Clinical Research Network (RDCRN)

Newborn Screening – Research, Laboratory Methods

- Newborn Screening Translation Research Initiative (NSTRI)
- CDC Newborn Screening Quality Assurance Program
- The Newborn Screening Technical Assistance & Evaluation Program
- The National Newborn Screening & Global Resource Center
- The American College of Medical Genetics
- The American Academy of Pediatrics

Other

- Clincaltrials.gov
- The FDA

Other Relevant Sources of Information

- The MPS I Registry (Genzyme)
- Pilot screening programs and research
 - MO, IL NBS Programs
 - Washington State, Mayo Clinic
- Follow up TEP and Key Informant calls

Next Steps

- Posting protocol
- Completing abstract/literature review
- TEP and Key informant interviews
- Grey literature review
- KTQ 10 Health Care System Impact Assessment Planning:
 - Population Impact Modeling (Dr. Prosser)
 - Public Health System Assessment of Resources for Readiness and Feasibility assessment (APHL)

Discussion