The Products, Impact, and Future Applications of the Region 4 Stork (R4S) Collaborative Project

Piero Rinaldo, MD, PhD

Professor of Laboratory Medicine T. Denny Sanford Professor of Pediatrics Mayo Clinic, Rochester, MN

J.S. Department of Health and Human Services

Discretionary Advisory Committee on Heritable Disorders in Newborns and Children

September 11th, 2014

Outline

- Origin and evolution of the Region 4 Stork (R4S) collaborative project
- The impact of R4S productivity and post-analytical interpretive tools
- Applicability of R4S beyond MS/MS (the "100/100" vision)
- Brief overview of CLIR 2.0 (4Q14)

L.S. Department of Health and Human Services

Discretionary Advisory Committee on Heritable Disorders in Newborns and Children

Outline

Origin and evolution of the Region 4 Stork (R4S) collaborative project

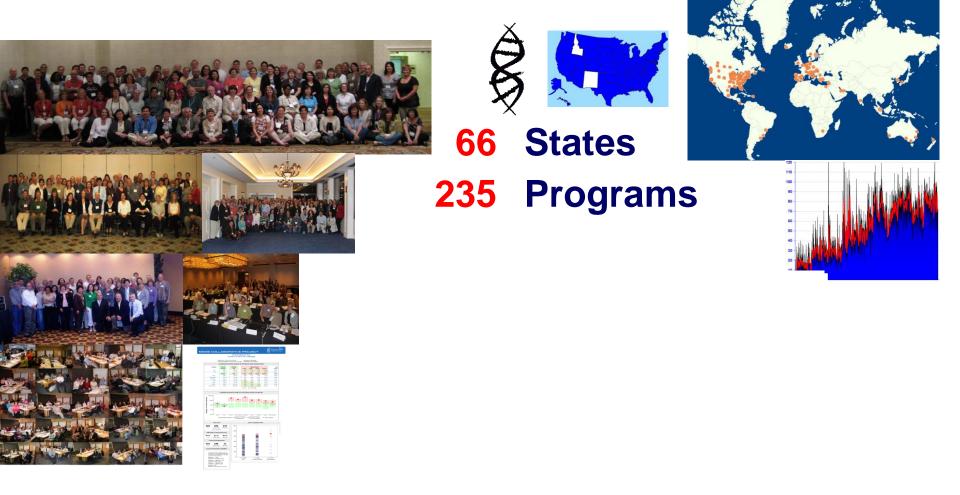
www.clir-r4s.org

U.S. Department of Health and Human Services

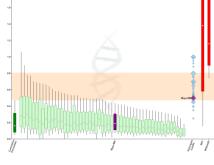
Discretionary Advisory Committee on Heritable Disorders in Newborns and Children

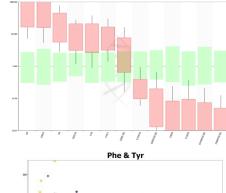
Origin of the R4S Project

- Region 4 Stork (R4S) started as a regional laboratory quality improvement project of expanded newborn screening by tandem mass spectrometry (7 state programs)
- R4S was selected as one of three projects of a Regional Genetics collaborative funded by the Health Resources and Services Administration (2004-2012)
- In May 2012 the R4S database became part of the Newborn Screening Translational Research Network, which is funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development

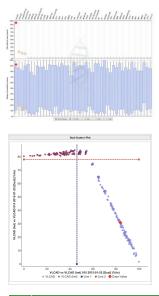


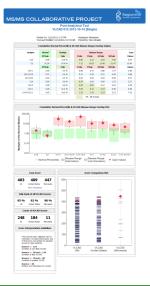
Evolution of R4S Project (2004-2014)


Worldwide participation <u>and</u> utilization (Sep 2014)


Outline

- Origin and evolution of the Region 4 Stork (R4S) collaborative project
- The impact of R4S productivity and post-analytical interpretive tools





MAYO

U.S. Department of Health and Human Services

Discretionary Advisory Committee on Heritable Disorders in Newborns and Children

The Impact of R4S

Process Current NBS

Collaboration

Limited

Worldwide

R4S

ARTICLE

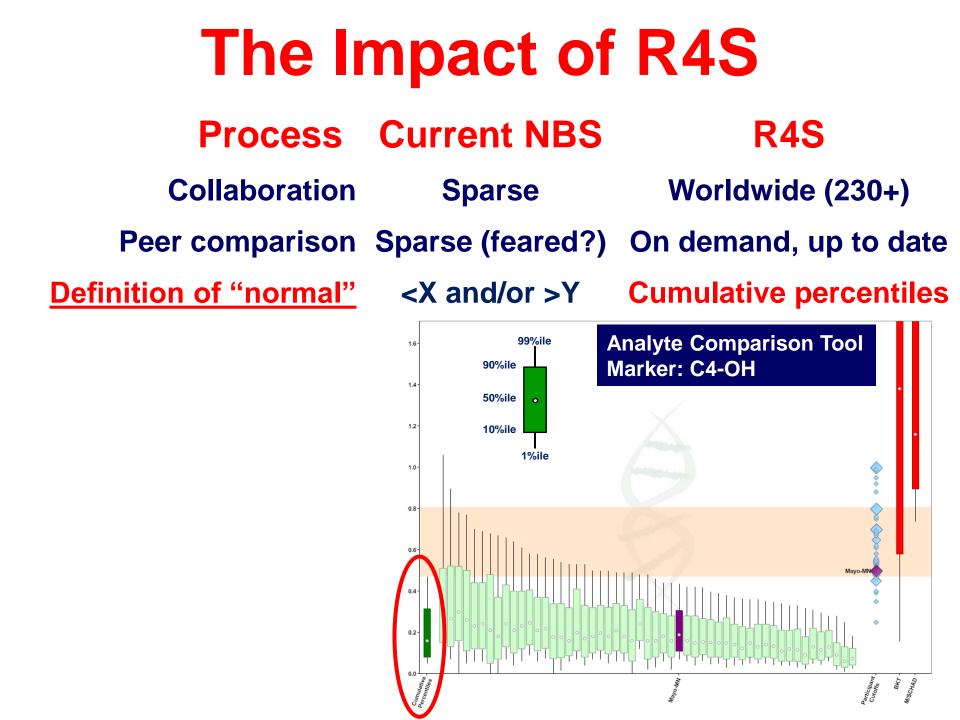
Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: A worldwide collaborative project

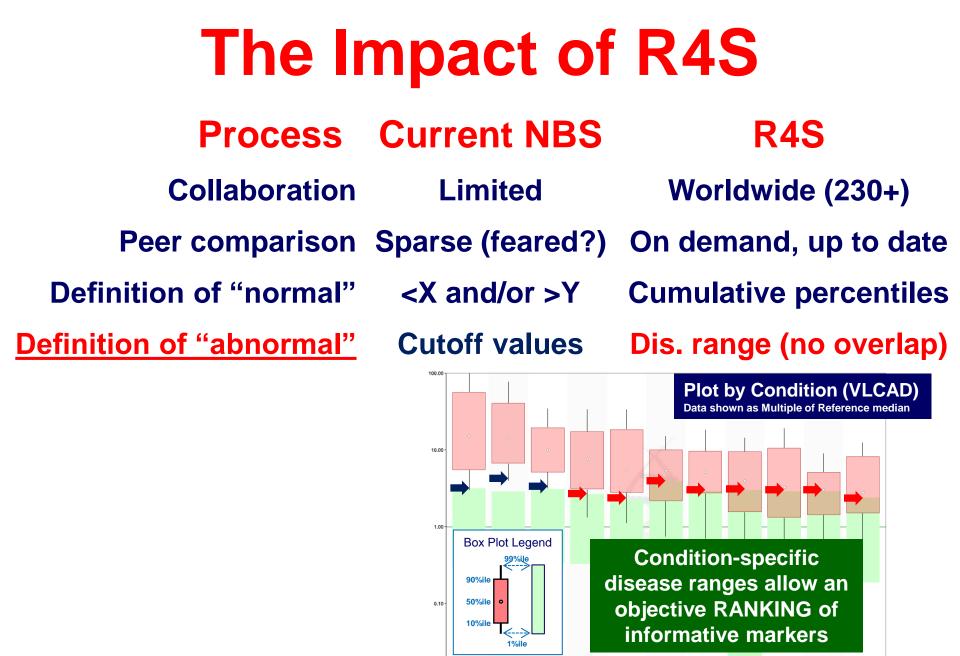
David M. S. McHugh', Cymthia A. Cameron, PhD', Jose E. Abdemur, MD', Maheru, Abdulrahman, MD, PhD', Ona Adair, PhD⁵, Shahira Ahmed Al Nuaimi, BSc⁴, Henrik Ahhman, MSc⁹, Jennifer J. Allen, RN, BSN⁷, Italo Antonozzi, MD⁵, Shaina Archer, MSc⁹, Shvita Au, MS⁶⁰, Christiane Auray-Blais, PhD¹⁴, Mel Baker, MD⁵, Fiona Bamforth, MD⁹, Kinga Beckmam¹, Gessi Bentz Pino, MS⁷, Stanton L. Berberich, PhD¹⁴, Robert Binard, BS⁴⁵, François Boemer, PharmD, PhD⁷⁶, Jim Bonham, PhD⁷⁷, Nancy N. Breen, MT¹⁶, Sardra C. Brynnt, MS, Michele Caggana, ScD⁷⁷, S. Graham Caldwell¹⁰, Matara Camilot, PhD⁷⁷, Canlere Campbell²⁷, Claukel Carthucci, MS⁶, Rohiti Cariappa, PhD⁷⁷, Clover Carlisle²⁴, Ubaldo Caruso²⁵, Michele Casgana, ScD⁷⁷, S. Graham Caldwell²⁰, Marta Camilot, PhD⁷⁷, Ane Miren Castilla²⁷, Diay E. Castineiras Rumos⁷⁷, Pranesh Chakraborny, PhD⁷⁸, Ran Chandrasckar, PhD⁷⁷, Alfredo Chardon Rumos⁷⁰, David Cheillan, PhD⁷¹, Yin-Hsiu Chien, MD, PhD⁷⁵, Thomas A. Child¹², Petr Chrustina, MSc⁴⁷, Gaetana Corso, MD³⁸, Robert Currier, PhD⁷⁹, Denis Cyr, MSc⁷¹, Noreni Cauczy, MSc⁴⁷, Oceania D'Apollio, PhD³⁸, Tita Davis, BS⁴⁷, Monigue G. de Sain-Yan der Velden, PhD⁷⁶, Meris Carris, Cyr, MSc⁷¹, Noreni Cauczy, MSc⁴⁷, Oceania D'Apollio, PhD³⁸, Tita Davis, BS⁴¹, Monigue G. de Sain-Yan der Velden, PhD⁷⁶, Sardra Carriso, MD¹⁶⁸, Diano Belgiato Pecellin, PhD⁷⁶, Denis Camero Espincaa, MS⁴⁷, Gaetana Corso, MD³⁸, Robert Currier, PhD⁷⁹, Denis Cor, MSc⁷¹, Roger Eaton, PhD⁷⁵, Kristel F. Fijolek³¹, Lurwence Fisher³², Lejin Franzson, PhD⁷⁸, Dinnaculaal Rueda, MD⁷⁶, Bert Elvers⁵¹, Roger Eaton, PhD⁷⁵, Kristel F. Fijolek³¹, Lurwence Fisher³⁶, Robert Grier, PhD⁷⁴, Lesse Guiseppe Giordano, PhD⁷⁴, Fiza Guiana Garcia L'Valdecasas Bermejo, PhD⁷⁴, Jimita Garriso', MD, PhD⁷, Kayafa Gu, PhD⁷⁴, Sardra Gue, PhD⁷⁴, Sardra Gue, PhD⁷⁴, Fiza Guiana, BS⁴¹, Mao He, PhD⁷⁷, Lanshu Han, MD⁷⁵, Hianwen, MF¹⁷⁵, Christa Haslip⁷⁹, Fiza

Catharine Join, PhD⁹⁰, John I Dimitris Katakouzinos Viktor Kočich, MD, PhD⁹⁵, I Marcia Lavochking²⁵, Soo Bary Lewis, MD⁹³, Carol Yannis L. Loukas, P Sandrine Marie, Ph Stephanie K. Mayfield Gibson

nova, PhD⁷⁸, Ward B. Jacox⁷⁹, sper, PhD⁸³, Brenda Kloppe⁷⁶, O⁸⁸, Ronald Koneski⁷⁴, e²⁴, Barbara Lesko, MT¹⁸, (MD⁷⁷, Fred Lorey, PhD¹⁹, Shawn Manos, BS⁷⁰⁰, etrich Matern, MD¹⁷, BA⁷¹, Julie McClure, MPH⁵⁹,

Stephane R. Michael MBBS⁴⁹, Christine D. McKeever³³, Barbara McNeilly¹⁰⁴, Mark A. Morrissey, PhD¹⁹, Paraskevi Moutsatou, PhD¹⁴, Janes A. Mikaly, RNC⁴⁰, Dimitris Nikoloudis, MSC⁴⁰, Bent Norgaard-Pedersen, MD²³, Devin Öglesbee, PhD¹, Marius Oltarzewski, PhD¹⁰⁹, Davine McCult, MBBS⁴⁰, Christine S. Mikoloudis, MSC⁴⁰, Bent Norgaard-Pedersen, MD²³, Devin Öglesbee, PhD¹, Marius Oltarzewski, PhD¹⁰⁹, Davine McCult, MDP¹¹, Ving-Doo Park, MD, PhD²³, Marzia Pasquali, PhD¹¹¹, Elisabetta Pasquini, MD⁹¹, Pallavi Patell¹¹², Kemeth A. Pass, PhD¹¹³, Colleen Peterson¹⁰⁰, Ricky W. Price, BSC⁴¹, Cacilla Queijo, BS⁴², Jonessy Quesada, MD¹⁴¹, Edward Randell, PhD¹²³, Colleen Peterson¹⁰⁰, Ricky W. Price, BSC⁴¹, Cacilla Queijo, BS⁴², Jonessy Quesada, MD¹⁴¹, Edward Randell, PhD¹²³, Conco Ranieri, PhD¹¹³, Kimiyo Raymond, MD¹, John E. Reddic, PhD²⁰, Mlogardra Reuben¹¹⁸, Charla Ricciardi, BS¹¹⁹, Piero Rinaldo, MD, PhD¹³, Joff D. Rivera, PhD¹²⁴, Onter K, MS¹²¹, Hugo Rocha, MS¹²³, Geraldine Roche, MSC⁴², Cheryl Rochman Greenberg, MD¹²³, José Maria Esea Mellado, PhD¹⁴, Inderneel Sahai, MD²⁴, Maria Isabel Salazar García-Blanco⁶³, Pedro Santiago-Borrey, MD³⁰, Marea Schenone, PhD¹⁴³, Inderneel Sahai, MD²⁴, Maria Isabel Salazar García-Blanco⁶³, Pedro Santiago-Borrey, MD³⁰, Marea Schenone, PhD¹²⁸, Roland Schoos, PhD¹⁰, Bart Schweitzer, RN³², Patricia Scot¹⁴, Margata R. Seashore, MD¹²³, Mary A. Seeterlin, PhD¹³⁸, Darial E. Seese¹²⁹, Darrin W. Sevier²⁹, Scott M. Shone, PhD¹²⁴, Jundinski Jones, MS⁴, Sheriybutty Sunny, BS⁶³, Zolanchy, BS, MT (SCCP)¹²⁵, Fin T. Strovel, PhD¹²⁴, Jundinski Jones, MS⁴, Sheriybutty Sunny, BS⁶⁹, Zolana Taktas, PhD¹⁰⁹, Timary Janky, Andre Schenone, PhD¹⁹, Kinberley Thure, RN¹⁴⁸, Nick Tzanakos¹¹, Alf G. Vallentie, PhD¹¹⁴, Juanus, MS⁴³, Sheriybutty Sunny, BS⁶⁷, Oltan Toktas, PhD¹⁰⁴, Stankey, BS, MT (SCCP)¹²⁵, Fin T. Strovel, PhD¹²¹, Jundinski Jones, MS⁴, Sheriybutty


Genet Med 2011;13:230-254


The Impact of R4SProcessCurrent NBSR4SCollaborationLimitedWorldwide (230+)Peer comparisonSparse (feared?)On demand, up to date

Mayo-MN 99%ile Values Per Analyte View comparison summary	
PEER PERCENTILES	
RED indicates Mayo-MN99%ile value is an OUTLIER (less than the 1%ile or greater than the 99%ile of all peer 99%ile values.	
ORANGE indicates Mayo-MN99%ile value is between the 1 - 10%ile or the 90 - 99%ile of all peer 99%ile values.	
YELLOW indicates Mayo-MN99%ile value is between the 10 - 25%ile or the 75 - 90%ile of all peer 99%ile values.	
GREEN indicates Mayo-MN99%ile value is between the 25%ile and 75%ile of all peer 99%ile values.	

Cutoff Comparison Tool

	Values								
		Ν	1%ile	10%ile	25%ile	50%ile	75%ile	90%ile	99%ile
Val	226	139	118	156	184	220	251	278	395
Xle	247	150	144	189	216	249	279	311	437
Met	70	151	17	29	33	39	47	60	79
Phe	104	154	59	70	77	88	101	114	151
Tyr	182	148	115	165	184	216	248	274	343
Suac	1.48	44	0.52	0.63	0.82	1.28	1.77	3.28	8.44
Gin	104	16	68	71	82	112	301	592	1786
Glu	369	46	79	315	351	538	716	817	864
Orn	102	58	54	74	123	180	247	296	407
Pro	1666	25	180	238	277	315	419	1133	1864
Cit	24	147	15.42	20	25	29	32	38	71
Asa	1.12	37	0.034	0.088	0.31	0.86	1.30	3.70	97
Arg	19	122	11.00	17	24	32	45	55	81
Ala	505	84	248	342	411	484	553	661	893
Ser	999	9	161	201	310	448	569	1033	1155
Gly	711	82	163	412	627	710	890	1056	1879
Thr	220	8	50	52	72	144	177	235	265
His	404	4	80	81	85	93	175	313	395
Asp	56	8	44	52	108	160	175	181	181
l/Phe	3.38	74	2.57	2.97	3.40	3.76	4.39	5.33	12.84
e/Phe	3.91	91	3.18	3.49	3.91	4.40	5.00	6.85	11.91
e/Ala	0.96	72	0.68	0.77	0.89	1.03	1.23	1.46	2.32
e/Tyr	3.66	14	2.41	2.89	3.39	3.58	3.80	4.21	5.20
t/Phe	0.82	92	0.41	0.53	0.62	0.75	0.87	1.09	1.34
et/Tyr	0.92	29	0.33	0.40	0.50	0.72	0.89	0.94	1.26
et/Xle	0.40	34	0.18	0.19	0.24	0.32	0.40	0.45	0.53
et/Cit	5.47	29	1.86	2.63	3.50	4.20	5.47	6.42	8.27
e/Tyr	1.61	118	0.96	1.19	1.33	1.51	1.73	1.93	2.47
c/Tyr	0.040	8	0.011	0.015	0.018	0.022	0.027	0.049	0.068

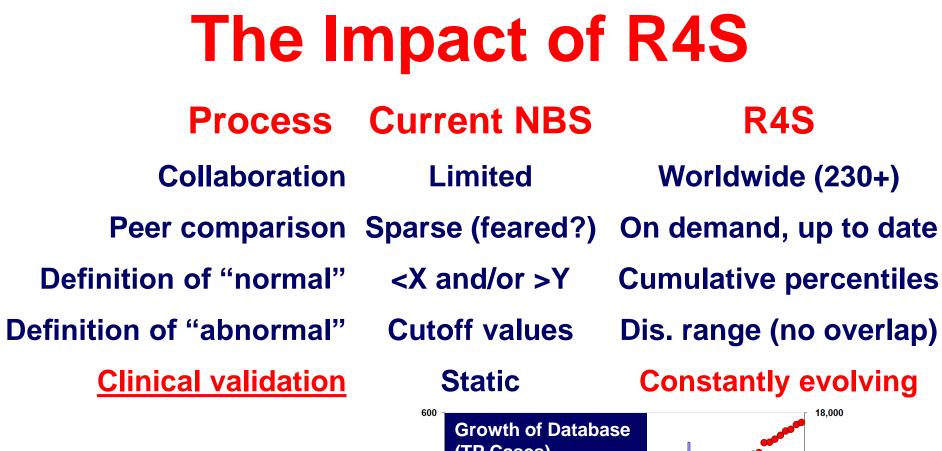
14:1/C2

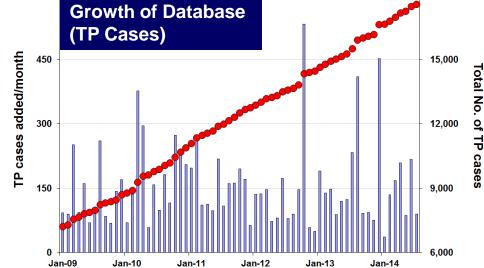
4:1/C16

C14:1

C14:2

C₁₄


:12:1


C14-OH

C12/CB

C16:7

C12

The Impact of R4S									
Process	Current NBS	R4S							
Collaboration	Limited	Worldwide (230+)							
Peer comparison	Sparse (feared?)	On demand, up to date							
Definition of "normal"	<x and="" or="">Y</x>	Cumulative percentiles							
Definition of "abnormal"	Cutoff values	Dis. range (no overlap)							
Clinical validation	Static	Dynamic							
Disease ranges	None	Condition-specific							
	Plot by Marker (Tetradecanoylcarnitine, C14)								
	0								

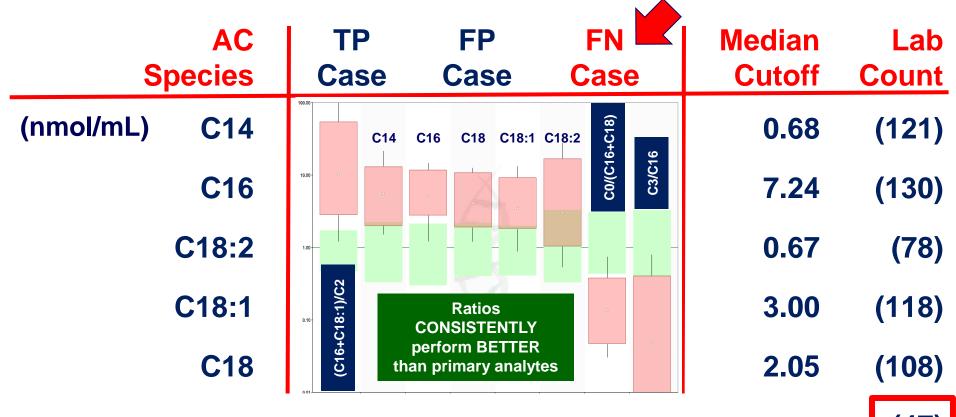
Reference

Range

CPT-II

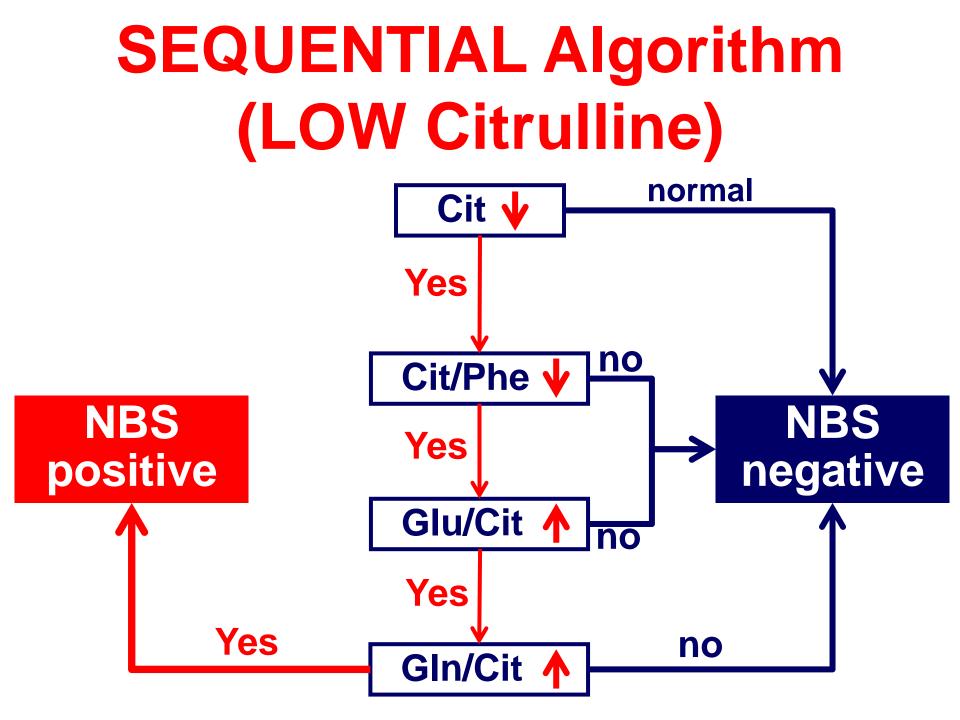
VLCAD

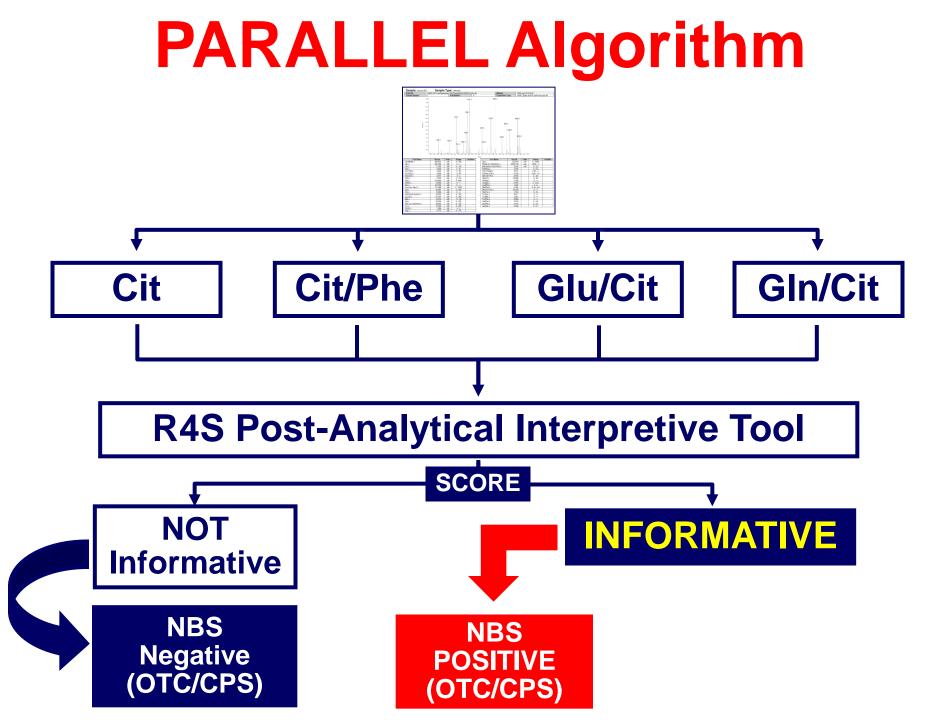
GA-II


LCHAD

The Impact of R4S								
Process	Current NBS	R4S						
Collaboration	Limited	Worldwide (230+)						
Peer comparison	Sparse (feared?)	On demand, up to date						
Definition of "normal"	<x and="" or="">Y</x>	Cumulative percentiles						
Definition of "abnormal"	Cutoff values	Dis. range (no overlap)						
Clinical validation	Static	Dynamic						
Disease ranges	None	Condition-specific						
Utilization of Ratios	Minimal	Extensive						

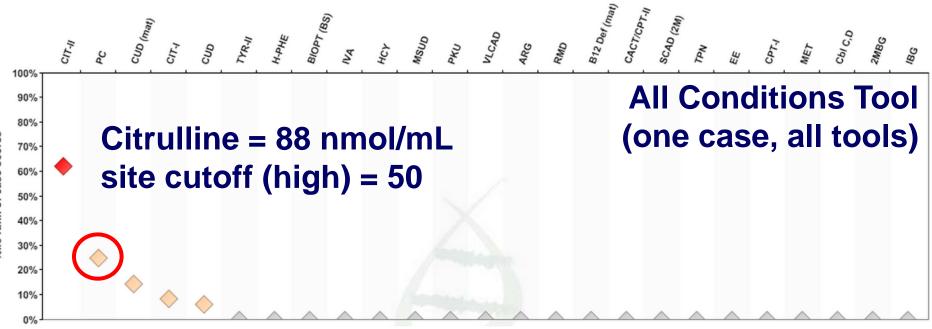
Create Analyte Ratio


Analyt	е Туре:	 Amino Acid Ratios Acylcarnitine Ratios 		
Numerator			Denominator	
	Amino A Acylcarr		Analyte Type:	 Amino Acids Acylcarnitines


A Tale of Three Cases with CPT-II def.

(47) (21) (59)

Process	Current NBS	R4S
Collaboration	Limited	Worldwide (230+)
Peer comparison	Sparse (feared?)	On demand, up to date
Definition of "normal"	<x and="" or="">Y</x>	Cumulative percentiles
Definition of "abnormal"	Cutoff values	Dis. range (no overlap)
Clinical validation	Static	Dynamic
Disease ranges	None	Condition-specific
Utilization of Ratios	Arbitrary, limited	Extensive (effort)
<u>Algorithms</u>	Sequential	Parallel (tools)



The Impact of R4S								
Process	Current NBS	R4S						
Collaboration	Limited	Worldwide (230+)						
Peer comparison	Sparse (feared?)	On demand, up to date						
Definition of "normal"	<x and="" or="">Y</x>	Cumulative percentiles						
Definition of "abnormal"	Cutoff values	Dis. range (no overlap)						
Clinical validation	Static	Dynamic						
Disease ranges	None	Condition-specific						
Utilization of Ratios	Arbitrary, limited	Extensive (effort)						
Algorithms	Sequential	Parallel (tools)						
Differential diagnosis	If thought of	"Built-in"						

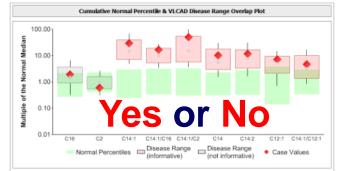
8075-9000 9075-6075-5075

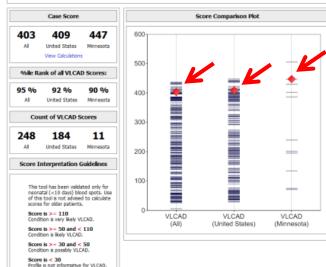
"Built-in" Differential Dx

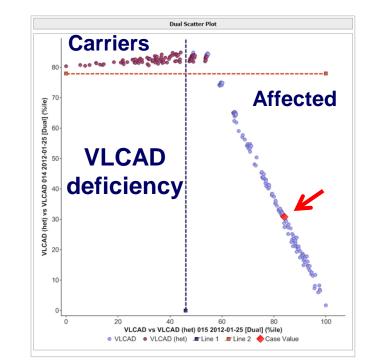
What is "PC"? (Pyruvate carboxylase deficiency)

R4S Post-Analytical Tools

- The R4S tools can provide a <u>clinically</u> <u>useful</u> answer to three basic questions:
 - YES or NO (one condition)
 - ONE or the OTHER (differential dx)
 - Pick ONE out of a GROUP (many conditions)


Post-Analytical Tool VLCAD 015 2012-10-14 [Single]


g


Region4

Printed On: 1/31/2013 1:37 PM Participant: Minnesota Tool Last Modified: 10/14/2012 10:33 AM Printed By: Piero Rinaldo

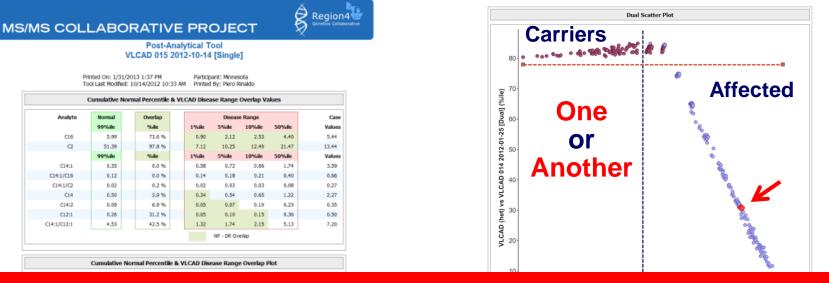
Analyte	Normal	Overlap		Disease	e Range		Ca
	99%ile	%ile	1%ile	5%ile	10%/je	50%/le	Valu
C16	5.99	73.6 %	0.90	2.12	2.53	4,40	5.44
C2	51.39	97.8 %	7.12	10.25	12.40	21.47	13.44
	99%ile	%ile	1%ile	5%ile	10%ile	50%ile	Valu
C14:1	0.35	0.0 %	0.58	0.72	0.86	1.74	3.5
C14:1/C16	0.12	0.0 %	0.14	0.18	0.21	0.40	0.6
C14:1/C2	0.02	0.2 %	0.02	0.03	0.03	0.08	0.2
C14	0.50	3.9 %	0.34	0.54	0.65	1.22	2.2
C14:2	0.09	6.9 %	0.05	0.07	0.10	0.23	0.3
C12:1	0.26	31.2 %	0.05	0.10	0.15	0.36	0.5
C14:1/C12:1	4.53	42.5 %	1.32	1.74	2.15	5.13	7.2

One or Another

Molecular Genetics and Metabolism 111 (2014) 484-492

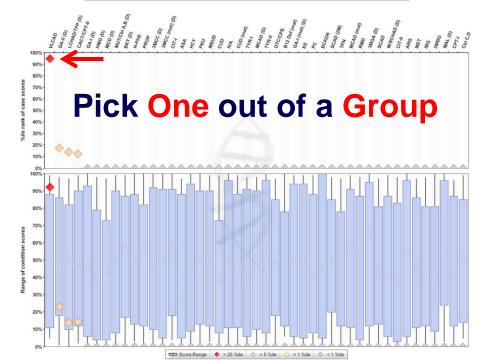
Contents lists available at ScienceDirect

Molecular Genetics and Metabolism

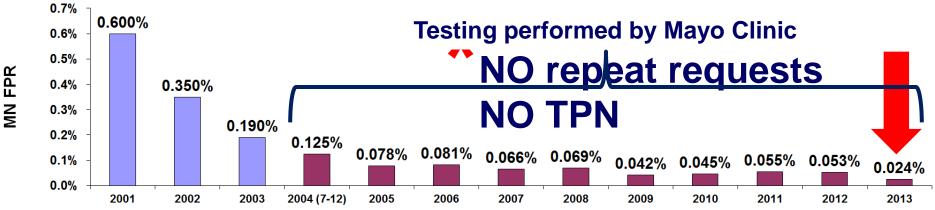

Molecular Genetic

journal homepage: www.elsevier.com/locate/ymgme

Infants suspected to have very-long chain acyl-CoA dehydrogenase deficiency from newborn screening


J. Lawrence Merritt II ^{a,*}, Sverre Vedal ^b, Jose E. Abdenur ^c, Sylvia M. Au ^d, Bruce A. Barshop ^e, Lisa Feuchtbaum ^f, Cary O. Harding ^g, Cheryl Hermerath ^h, Fred Lorey ^f, David E. Sesser ^h, John D. Thompson ⁱ, Arthur Yu ^d

When we focused upon the HET subgroup, of the 27 cases calculated, 23 were predicted to be heterozygotes, 4 were inconclusive, and none were predicted to be VLCADD.



Do R4S tools make any difference?

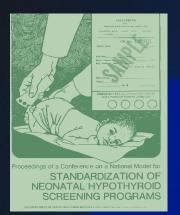
MN Performance by MS/MS (2004-13)

0.0% +	2001	2002	2003	2004 (7-12)	2005	2006	2007	2008	2009	2010	2011	2012
Period						201	3					
Births					71	,20 '	7					
Abn	orm	al c	ase	es		5	5 🔭		(N=2	(8)	
True positives				3	8	USA						
False positives					1	7	AVERAGE					
										7	'.1	
FPR			0.0)24%	0		(0.51	%			
PPV					69 %	6			18	%		

Outline

Origin and evolution of the Region 4
 Stork (R4S) collaborative project

LABORATORY QUALITY IMPROVEMENT SCREENING


• Applicability of R4S beyond MS/MS (the "100/100" vision)

"...there will be other tests that will be as important."

U.S. Department of Health and Human Services

Discretionary Advisory Committee on Heritable Disorders in Newborns and Children

"... it's very important in the deliberations that are carried out here that all bear in mind that there are things other than hypothyroid being tested on the blood spot specimen." "...there will be other tests that will be as important."

Dr. Robert Guthrie August 22, 1979 State University of New York at Buffalo

Partial List of Candidate Conditions for Expansion of Newborn Screening

Fabry disease (X-linked)

Gaucher disease

Krabbe disease

Metachrom. Leukodystr. (MLD)

Pseudo MLD

MPS I

MPS II

MPS IIIA

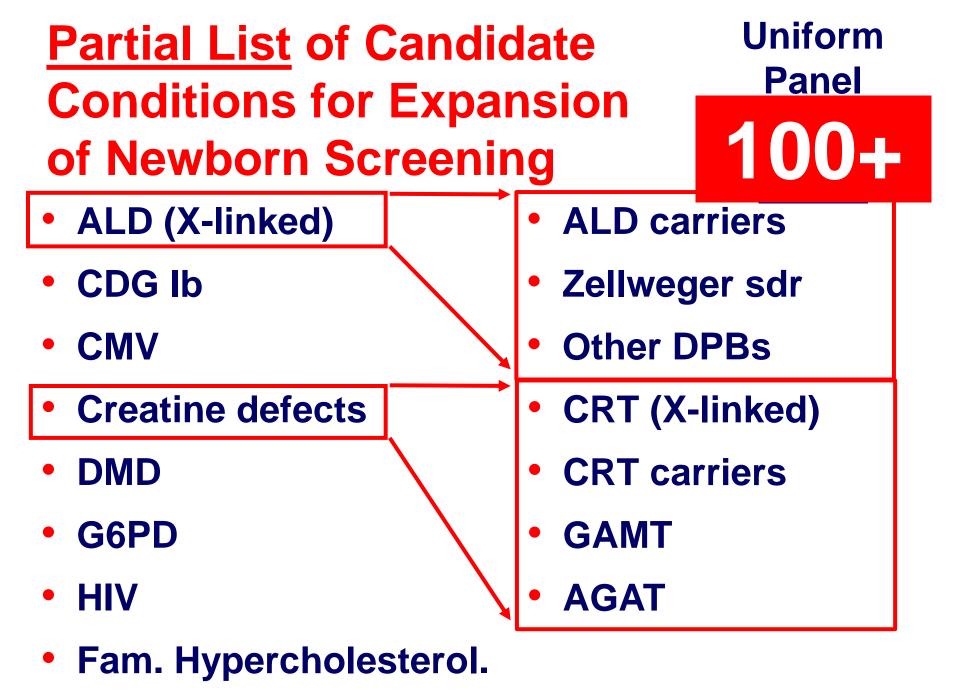
MPS VI

Mucolipidosis type II/III

Multiple sulphatase deficiency

Niemann–Pick disease type A/B

Pompe disease


- Fragile X
- Friedreich's ataxia

• LSD

Proximal UCDs

• SLO

- SMA
- Toxoplasmosis
- Wilson disease

How Can We Possibly Do THAT?

- <u>Multiplexing</u> might be a compelling necessity (the traditional "one condition-one test" model is no longer feasible)
- Evidence of analytical <u>robustness</u> and reproducibility will be scrutinized more
- Implementation may require in-depth <u>clinical</u> <u>validation</u> (higher expectations driven by evidence review process)
- Performance metrics must <u>exceed GREATLY</u> historical standards (0.1%-0.5% per condition)

Minnesota NBS Performance in DBS (N=209,432; Period: 2008-2010)

	Cond UP	itions ST	FPR	MN FP/wk	CA (560k)	USA (4.2M)
IEM (MS/MS)	20	22	0.05%	0.7	5.4	40.4
Biotinidase	1	0	0.09%	1.2	9.7	72.7
CAH	1	1	0.11%	1.5	11.8	88.8
Hypothyroidism	1	0	0.21%	2.9	22.6	169.6
Cystic Fibrosis	1	0	0.34%	4.7	36.6	274.6
Galactosemia	1	2	0.06%	0.8	6.5	48.5
Hbpathies	3	(1)	0.02%	0.3	2.2	16.2
ТОТАІ	00	00	0.00%/			744
TOTAL	28	26	0.88%	12	95	711

NBS Performance by MS/MS (US <u>Average</u> FPR, N=28)

	Cond UP	itions ST	FPR	MN FP/wk	CA (560k)	USA (4.2M)
IEM (MS/MS)	20	22	<u>0.51</u> %	7.0	54.9	411.9
Biotinidase	1	0	0.09%	1.2	9.7	72.7
САН	1	1	0.11%	1.5	11.8	88.8
Hypothyroidism	1	0	0.21%	2.9	22.6	169.6
Cystic Fibrosis	1	0	0.34%	4.7	36.6	274.6
Galactosemia	1	2	0.06%	0.8	6.5	48.5
Hbpathies	3	(1)	0.02%	0.3	2.2	16.2
TOTAL	28	27	1.34%	19	145	1083

Impact of Improved Performance

	Cond UP	itions ST	MN FP/wk	CA (560k)	USA (4.2M)
IEM (MS/MS)	20	22	1.4	10.8	80.8
Biotinidase	1	0	1.2	9.7	72.7
CAH	1	1	1.4	10.8	80.8
Hypothyroidism	1	0	1.4	10.8	80.8
Cystic Fibrosis	1	0	1.4	10.8	80.8
Galactosemia	1	2	0.8	6.5	48.5
Hbpathies	3	(1)	0.3	2.2	16.2
SCID	1	(1)	1.4	10.8	80.8
TOTAL	29	27	9	72	541

A Personal View of the Evolution of the Recommended Uniform **Screening Panel Performance-based evolution** of newborn screening: **100+ conditions screened** AND <100 false positives per day in the US for ALL TESTS combined

False Positives: The Dark Side of Newborn Screening

- Recall and repeat analysis (2nd, 3rd, 4th...)
- Disruption of care (premature, sick newborns)
- ER visit(s), admission(s)
- Confirmatory testing (\$\$\$)

In the current (and future) health care climate, reduction of false positives is an <u>ABSOLUTE</u> requirement in parallel to any expansion of the recommended panel

- Referral to multiple specialists, 2nd opinions
- Disruption of family life, and work schedule
- Impact on extended family life (stress)

How to Improve Performance?

- Adopt "top" screening
- Increase frequency of testing
- Find new and better markers

T. Murner, Appeal to fools (1512)

- Succinylacetone for Tyrosinemia type I
- Better clinical validation of cutoff values

or

Do more with what is being done ALREADY

R4S Elsewhere

ORIGINAL RESEARCH ARTICLE in Medicine

© American College of Medical Genetics and Genomics

Open

Postanalytical tools improve performance of newborn screening by tandem mass spectrometry

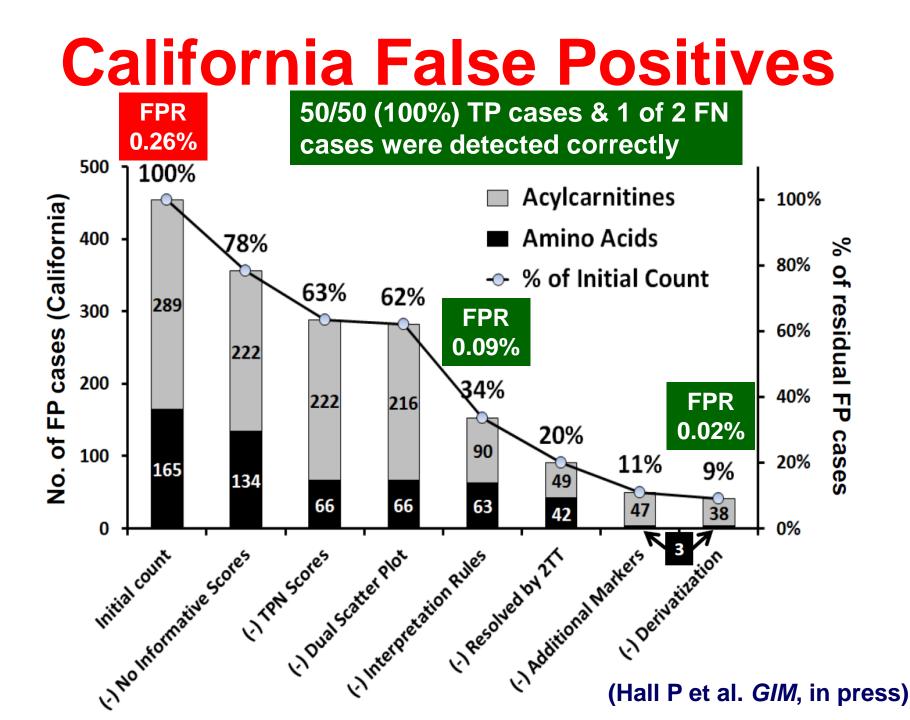
Patricia L. Hall, PhD¹, Gregg Marquardt, MSS¹, David M.S. McHugh¹, Robert J. Currier, PhD², Hao Tang, PhD², Stephanie D. Stoway, BS¹ and Piero Rinaldo, MD, PhD¹

Purpose: The purpose of this study was to compare performance metrics of postanalytical interpretive tools of the Region 4 Stork collaborative project to the actual outcome based on cutoff values for amino acids and acylcarnitines selected by the California newborn screening program.

Methods: This study was a retrospective review of the outcome of 176,186 subjects born in California between 1 January and 30 June 2012. Raw data were uploaded to the Region 4 Stork Web portal as .csv files to calculate tool scores for 48 conditions simultaneously using a previously unpublished functionality, the tool runner. Scores for individual target conditions were deemed informative when equal or greater to the value representing the first percentile rank of known true-positive cases (17,099 cases in total).

Results: In the study period, the actual false-positive rate and positive predictive value were 0.26 and 10%, respectively. Utilization of the Region 4 Stork tools, simple interpretation rules, and second-tier tests could have achieved a false-positive rate as low as 0.02% and a positive predictive value >50% by replacing the cutoff system with Region 4 Stork tools as the primary method for postanalytical interpretation.

Conclusion: Region 4 Stork interpretive tools, second-tier tests, and other evidence-based interpretation rules could have reduced false-positive cases by up to 90% in California.


Genet Med advance online publication 29 May 2014

Key Words: cutoff values; newborn screening; postanalytical interpretive tools; second-tier test; tandem mass spectrometry

R4S Elsewhere

- Comparison between <u>actual</u> (cutoff values) and <u>estimated</u> outcome (R4S tools) using a high-throughput functionality (tool runner)
- Data from California DOPH (Jan-Jun 2012)
- 176,186 newborns after exclusion criteria

(Hall P et al. GIM, in press)

Impact of Improved Performance (Goal: each test FPR ≤0.1%)

_					-	
	Cond	itions		MN	CA	USA
	UP	ST	FPR	FP/wk	(560k)	(4.2M)
IEM (MS/MS)	20	22	0.02%	0.3	2.2	16.2
Biotinidase	1	0	0.09%	1.2	9.7	72.7
CAH	1	1	0.10%	1.4	10.8	80.8
Hypothyroidism	1	0	0.10%	2.9	22.6	80.8
Cystic Fibrosis	1	0	0.10%	4.7	36.6	80.8
Galactosemia	1	2	0.06%	0.8	6.5	48.5
Hbpathies	3	(1)	0.02%	0.3	2.2	16.2
SCID	1	(1)	0.10%	1.4	10.8	80.8
			PER DAY	<u> </u>	<10	<70
TOTAL	29	28	0.60%	8	64	481

Currently Nominated Conditions

Uniform Panel

58 ?

- Fabry disease
- Gaucher disease
- Krabbe disease
- Metachrom. Leukodystr. (MLD)
- Pseudo MLD
- **MPS** I
- MPS II
- **MPS IIIA**
- **MPS VI**
- Mucolipidosis type II/III
- Multiple sulphatase deficiency
- Niemann–Pick disease type A/B

Pompe disease

- Fragile X
- Friedreich's ataxia
- LSD
- Menkes disease
- SLO
- SMA
- Toxoplasmosis
- Wilson disease

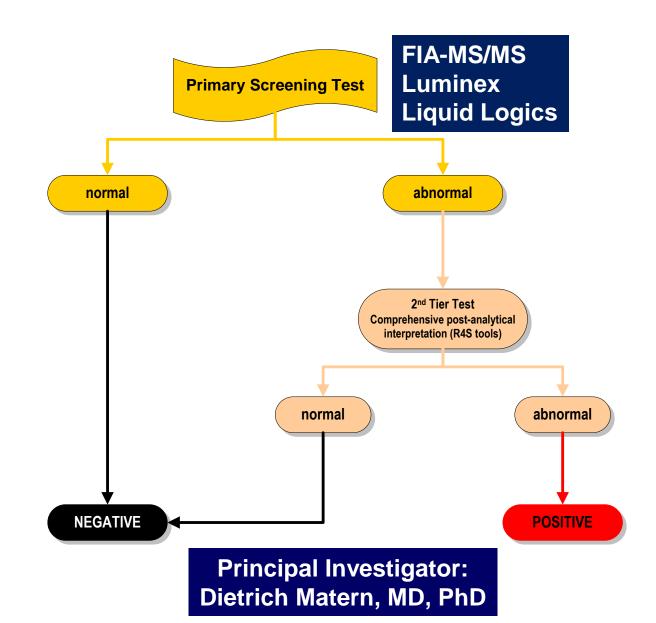
Pompe Disease (Condition)

- Incidence
 - 1:40,000 by clinical ascertainment (US)
- Timing of clinical onset
 - Continuum of disease spectrum (all ages)
 - Median age at onset between 1.5 4 months of age
- Severity of disease
 - Death due to cardio-respiratory failure

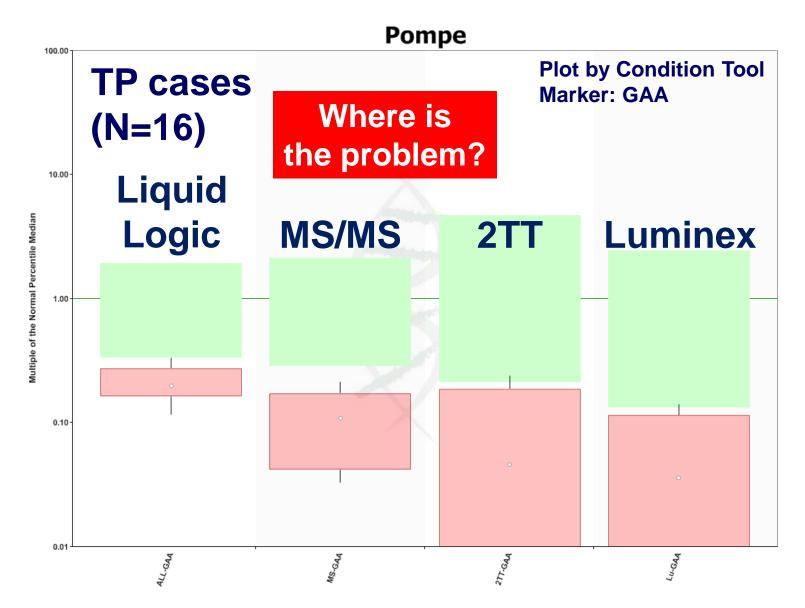
Many

in the first year of life in the infantile form

Pompe Disease (Test)

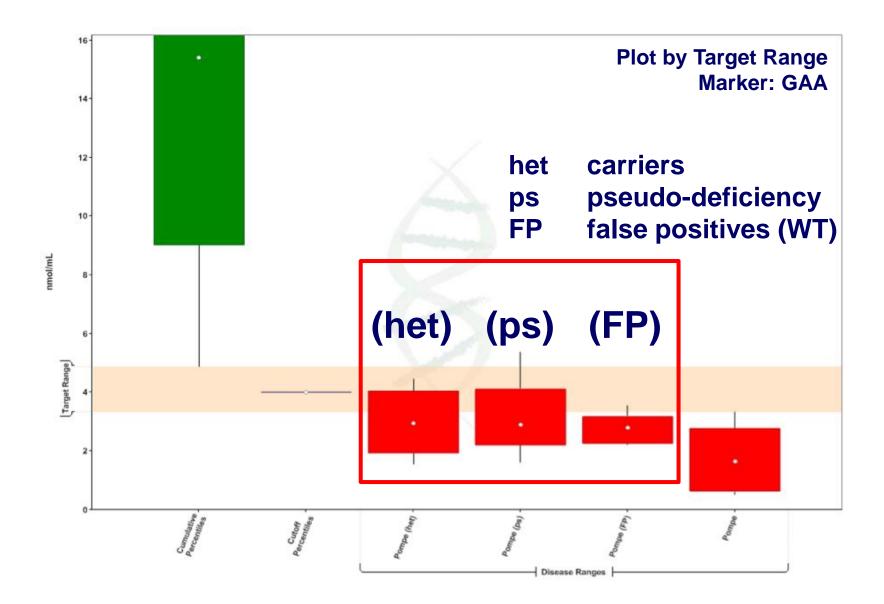

- Screening test(s) to be used
 - Three alternative platforms under evaluation
- Modality of screening
 - Dried blood spots (DBS)
- Risks

FIA-MS/MS Luminex Liquid Logics

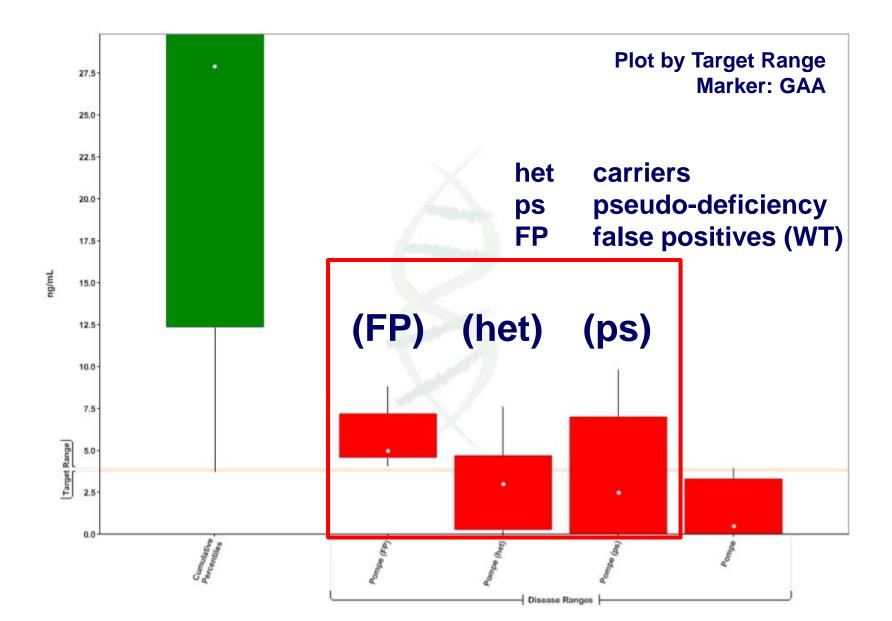

- Detection of late-onset cases
- Interference by neutral maltase (pseudo-deficiency)
- Clinical validation
 - First pilot study in Taiwan (2008)
- Performance metrics

Preliminary evidence of high false positive rate

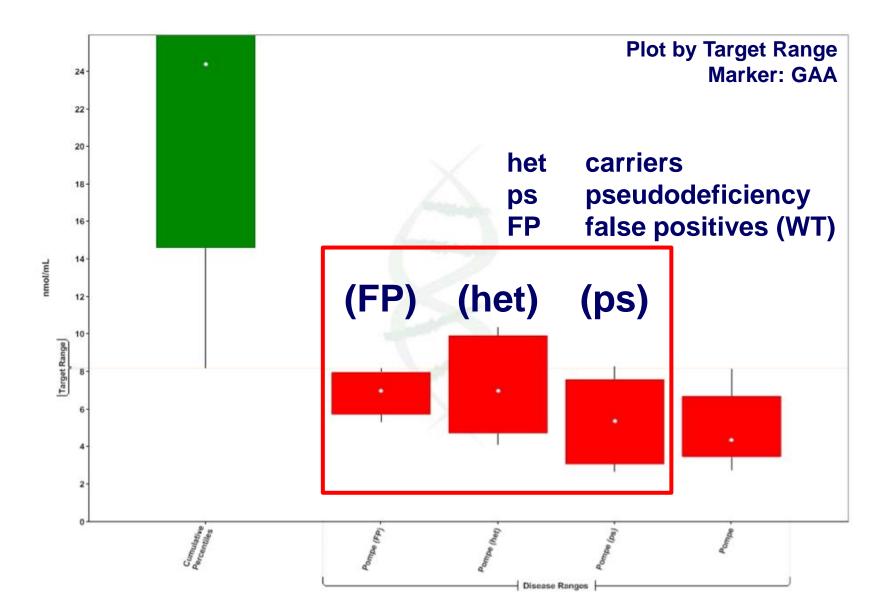
LSD Pilot Study



Method Comparison



Pilot Study for Pompe Disease Luminex MS/MS **Liquid Logic Samples tested:** 99,856 99,925 90,713 GAA abnormal 457 (0.46%) **588 (0.59%) 330 (0.33%)** (1st Tier): **GAA** activity low 37 (0.04%) 40 (0.04%) 36 (0.04%) (2nd Tier) **5** True Positives (likely late onset) Molecular **Pseudo deficiency** 26 genetic **= FALSE POSITIVES 5** Carriers analysis No mutations 4


Pompe False Positives (MS/MS)

Pompe False Positives (Luminex)

Pompe False Positives (Liquid Logic)

Pilot Study for Pompe Disease Luminex MS/MS **Liquid Logic Samples tested:** 99,856 99,925 90,713 **GAA** abnormal 457 (0.46%) **330 (0.33%) 588 (0.59%)** (1st Tier): **GAA** activity low 37 (0.04%) 40 (0.04%) 36 (0.04%) (2nd Tier) **5** True Positives (likely late onset) Molecular 26 Pseudo deficiency genetic **5** Carrier **= FALSE POSITIVES** analysis No mutation 4 **FPR:** 0.034% 0.032% 0.035% **Positive PV:** 13.5% 12.5% 13.9%

Pilot Study for Pompe Disease Luminex MS/MS **Liquid Logic Samples tested:** 99,856 99,925 90,713 GAA abnormal 457 (0.46%) **588 (0.59%) 330 (0.33%)** (1st Tier): **GAA** activity low 37 (0.04%) 40 (0.04%) 36 (0.04%) (2nd Tier) Ŕ $(\bigcirc$ LSD COLLABORATIVE PROJECT Home **Data Submission Tools & Reports** User Settings Documentation Site Admin Log Out Welcome: Dieter Matern **Post-Analytical Tools FPR:** 0.032% 0.035% 0.034% **Positive PV:** 13.5% 12.5% 13.9%

Pilot Study for Pompe Disease Luminex MS/MS **Liquid Logic Samples tested:** 99,856 99,925 90,713 GAA abnormal 457 (0.46%) **588 (0.59%) 330 (0.33%)** (1st Tier): **GAA** activity low 37 (0.04%) 40 (0.04%) 36 (0.04%) (2nd Tier) Abnormal 4 (0.004%) **5 (0.005%)** 11 (0.011%) per R4S Tools FPR (<u>R4S</u>): 0.007% 0.000% 0.000% **Positive PV:** 45.5% 100% 100%

Currently Nominated Conditions

Uniform Panel

Fabry disease

Gaucher disease

Krabbe disease

Metachrom. Leukodystr. (MLD)

Pseudo MLD

MPS I

MPS II

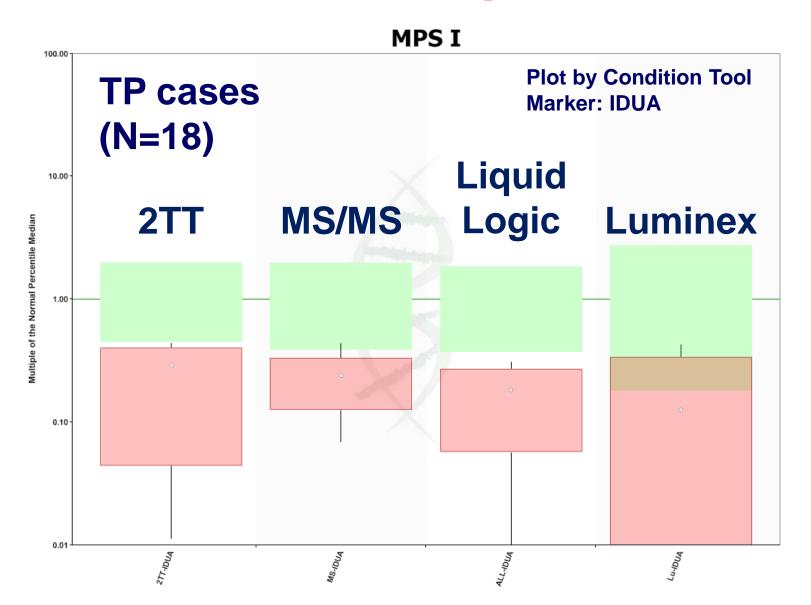
MPS IIIA

MPS VI

Mucolipidosis type II/III

Multiple sulphatase deficiency

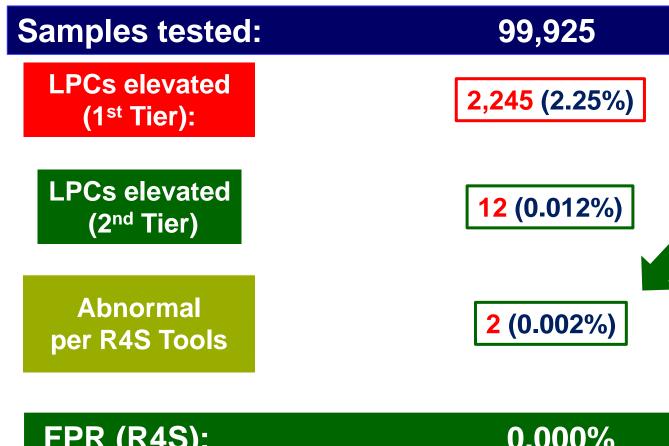
Niemann–Pick disease type A/B


Pompe disease

- Fragile X
- Friedreich's ataxia

• LSD

- Menkes disease
- SLO
- SMA
- Toxoplasmosis
- Wilson disease


Method Comparison

Pilot Study for <u>MPS-I</u>								
	Luminex	MS/MS	Liquid Logic					
Samples tested:	99,856	99,925	90,713					
IDUA abnormal (1 st Tier):	397 (0.59%)	590 (0.40%)	182 (0.18%)					
IDUA activity low (2 nd Tier)	113 (0.11%)	135 (0.14%)	<mark>90 (0.09%)</mark>					
Abnormal per R4S Tools	18 (0.018%)	20 (0.020%)	19 (0.019%)					
FPR (R4S): Positive PV:	0.002% 89%	0.004% 80%	0.006% 74%					

Pilot Study for X-ALD

MS/MS

FPR (R4S): Positive PV: 0.000% 100% **Performance of R4S Tools for RUSP Candidate Conditions PPV FPR** Condition Ν 100K¹ 0.007%² **46**% Pompe 0.006%² 100K¹ **74%**² MPS-I 100K¹ X-ALD 0.000% 100% 432K³ **OTC/CPS** 31% 0.003% 680K⁴ 100% **RMD** 0.000% NICHD pilot study (P.I., Dietrich Matern) ³MN prospective experience 2009-2013 ² Worst performance of the 3 tests MN prospective experience 2004-2013

Impact of Improved Performance (Goal: each test FPR ≤0.1%)

	Conditions			MN	СА	USA
	UP	ST	FPR	FP/wk	(560k)	(4.2M)
IEM (MS/MS)	20	22	0.02%	0.3	2.2	16.2
Biotinidase	1	0	0.09%	1.2	9.7	72.7
CAH	1	1	0.10%	1.4	10.8	80.8
Hypothyroidism	1	0	0.10%	1.4	10.8	80.8
Cystic Fibrosis	1	0	0.10%	1.4	10.8	80.8
Galactosemia	1	2	0.06%	0.8	6.5	48.5
Hbpathies	3	(1)	0.02%	0.3	2.2	16.2
SCID	1	(1)	0.10%	1.4	10.8	80.8
6 NEW Targets	6	4	0.016%	0.1	0.5	4.0
TOTAL	34	32	PER DAY	<u>~</u> 1	<10 UNC	<70 HANGED!

Outline

- Origin and evolution of the Region 4 Stork (R4S) collaborative project
- The impact of R4S productivity and post-analytical interpretive tools

• Brief overview of CLIR 2.0 (4Q14)

U.S. Department of Health and Human Services

Discretionary Advisory Committee on Heritable Disorders in Newborns and Children

The Evolution of R4S/CLIR

- R4S is based on a multivariate pattern recognition software we have named CLIR, Collaborative Laboratory Integrated Reports
- Version 2.0 in under development within the Mayo IT infrastructure and will include several upgrades and new functionalities:
 - Single repository of all markers (application neutral)
 - Collection of individual reference cases, not cumulative percentiles
 - Collection of covariate information for all cases (BW, GA, age)
 - Ability to create and apply complex ratios and equations
 - Adjustment of results for one or more covariates to <u>reduce</u> <u>the overlap between reference and disease ranges</u>

R4S 2.0 Goes "Big Data"

MAYO CLINIC CLIR			R - Collaborat	ive Lab	oratory I	ntegrated I	Reports	
Applicati	ion:	MS/MS		•			Welcome: rinaldo	@mayo.edu
Home	Loc	ation Data 🔻	Post-Analytical Tools 🔻	Productivity Tools •	Admin 🔻		My Account •	Sign Out

Participating sites 55 **Countries** 24 Data allocation Repository Ref. data points 108,870,757 **Covariates** 4 (for NBS) Cov. data points 3,766,621 6,827 TP cases 489,618 TP data points **FP** cases 194

Is R4S Applicable to Other Tests?

- New tests and/or platforms in newborn screening
- Old screening tests (with poor performance)
- Other tests generating numerical data, especially if/when combined in complex profiles
 - Biochemical Genetics
 - Pediatric laboratory medicine, basic and esoteric
 - Collaborative research projects
 - Clinical trials

Minnesota NBS Performance in DBS (N=209,432; Period: 2008-2010)

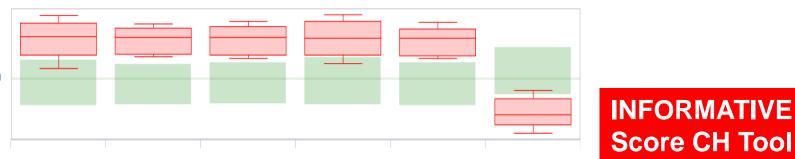
	Cond UP	itions ST	FPR	MN FP/wk	CA (560k)	USA (4.2M)
IEM (MS/MS)	20	22	0.05%	0.7	5.4	40.4
Biotinidase	1	0	0.09%	1.2	9.7	72.7
CAH	1	1	0.11%	1.5	11.8	88.8
Hypothyroidism	1	0	0.21%	2.9	22.6	169.6
Cystic Fibrosis	1	0	0.34%	4.7	36.6	274.6
Galactosemia	1	2	0.06%	0.8	6.5	48.5
Hbpathies	3	(1)	0.02%	0.3	2.2	16.2
ΤΟΤΑΙ	20	26	0 000/	10	05	744
TOTAL	28	26	0.88%	12	95	/11

R4S for Other NBS Tests

Condition	Marker	TN	TP	FP
Hypothyroidism	TSH	60,598	191	139
Cystic Fibrosis	IRT	60,598	239	109
CAH	170HP	60,598	96	410
Galactosemia	GALT	60,598	113	91
Biotinidase	BIOT	60,598	0	0
SCID	TRECs	60,598	0	0

Data provided by Bob Currier and Hao Tang, courtesy of the California Department of Public Health

Could R4S Improve the Specificity of CH screening?

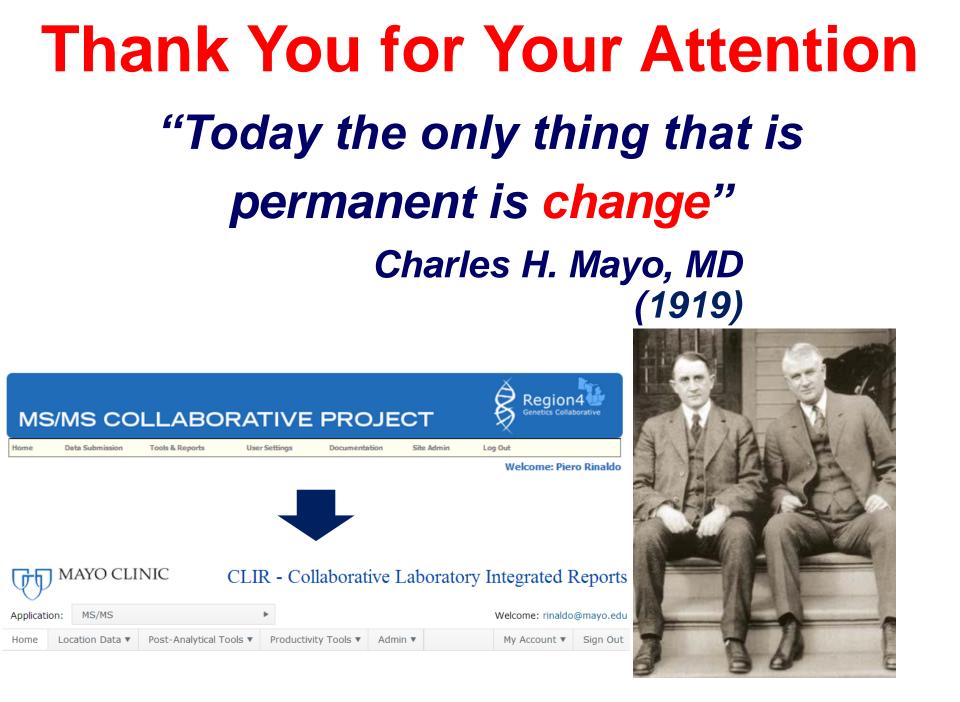

TP

191

FP

139

Delta



Evaluation Rules Adjust. Count

R4S tools could have prevented 58% of 139 false positive cases based on TSH cutoff alone

Conclusions

- From an analytical perspective, future expansions of the NBS panel should be driven by (much) better specificity
- "Old" tests should be improved as well, best if done first
- The goal of 100+ conditions causing <100 FP cases/day in the US is likely attainable with increased reliance on postanalytical interpretive tools based on large scale data sharing and worldwide collaboration
- R4S has provided a blueprint for future activities. CLIR 2.0 website (<u>https://clir.mayo.edu/</u>) go live in 4Q2014
- Got profiles?
- Built-in adjustment(s) for 1+ covariates could be an alternative to conventional reference ranges (age-matched)
- To participate in CLIR, send e-mail to rinaldo@mayo.edu

