

Newborn Screening for X-linked Adrenoleukodystrophy (X-ALD): Update from the Condition Review Workgroup

Alex R. Kemper, MD, MPH, MS May 12, 2015

Overview: X-Linked Adrenoleukodystrophy (X-ALD)

- Peroxisomal disorder affecting the adrenal cortex and the central nervous system (CNS)
- Broad phenotype spectrum ranging in onset and severity from childhood through adulthood
- Primarily affects males (across the spectrum). Female heterozygous carrier can develop symptom onset in adulthood
- Most common peroxisomal disorder
- Estimated X-ALD incidence in the U.S.:
 - 1 in 21,000 newborn males
 - 1 in 14,000 newborn females are carriers

Systematic Evidence Review: Published Literature – Through ~November 2014

Figure 1. Preliminary PRISMA Diagram of Published Literature Search

N~170

Records identified through Identification database searching • Keywords: ("Adrenoleukodystrophy" [Mesh]) OR N = 1317 ("Adrenoleukodystrophy" [tiab]) ("Adrenoleukodystrophy/therapy"[Mesh]) OR ("X-ALD"[tiab]) OR ("very long-chain fatty acids"[All Fields]) OR ("VLCFA"[tiab]) OR ("Lorenzo's Records after duplicates, animal research removed oil"[Supplementary Concept]) OR ("Lorenzo's Screening N = 1035 oil"[tiab]) AND ("animals"[Mesh] NOT "humans" [mesh]) AND Limits: English. Articles through PubMed, EMBASE, & **Records screened** CINAHL since database inception (1317) N = 1035 Articles screened for relevance (987) Eligibility Full-text articles Articles assessed for initial eligibility (495) assessed for preliminary eligibility Articles retained for data extraction & N = 495synthesis ~170 (pending final exclusions) Screening by two independent reviewers Included Studies retained for review and extraction

Records excluded

N = 540

NBS for X-ALD Condition Review Focus

- Primary target of review: childhood forms detected at screening
 - Cerebral ALD symptomatic and asymptomatic [later-onset] at birth
 - Adrenal insufficiency/Addison's only
- Secondary screening targets counts of female carriers detected, other disorders (Zellweger's, other peroxisomal disorders)
- Exclude evaluating expected outcomes of early diagnosis of adult-onset conditions (AMN, female heterozygote ALD)

U Duke Clinical Research Institute

X-linked Adrenoleukodystrophy (ALD)

Genetics:	 ABCD1 = single causative gene of X-ALD, maps to Xq28. ABCD1 gene encodes adrenoleukodystrophy protein (ALDP), which facilitates transport of very long-chain fatty acids (VLCFA) into peroxisomes. ALDP deficiency impairs VLCFA beta-oxidations, leading to elongation of VLCFA.
	 >600 mutations identified (http://www.x-ald.nl); most are unique
	- No genotype-phenotype correlation, even within families
Screening:	Dried-blood spots – laboratory study conducted by Mayo Clinic (~100,000 samples), prospective screening in MD (~5,000 newborns)
Diagnosis:	ABLD1 mutation analysis, measurement of VLCFAs in plasma, MRI ("Loes Score")

Treatment(s): HSCT, Steroid/Adrenal hormone replacement therapy, Gene therapy

X-ALD Phenotype Spectrum

	CHILDHOOD			ADULT		
	Cerebral ALD (CALD) *(about 90% of C-CALD also have adrenal insufficiency)		Adrenal Insufficiency* ("Addison's Only)	Adrenomyelo -neuropathy (AMN)	Women with X-ALD	
Onset Age (Yrs)	2.5–10	10–21	>21	>2	>18	Mostly >40
Frequency (%)	CHILD 31 – 35	ADOL 4 – 7	ADULT 2 – 5	(prevalence decreases with age)	40 - 46	unknown symptomatic
Progression	Rapid			-	Slow	Slow
Myelopathy	Extensive	Some	Possible	-	+	+
Brain MRI - White matter lesions	Extensive			_	Some	Occasional- Rare
Behavioral & Cognitive Disorder	Extensive	Some	Possible		 (+ if cerebral involvement) 	Very rare
Peripheral Neuropathy		Rare	Possible	_	Sensory-motor, axonal	+/-
Life Expectancy (untreated)	Death within a few years after onset					6

X-ALD Newborn Screening

- Measurement of C26:0 lysophosphatidylcholine (26:0-lyso-PC)
- Detected in dried-blood spots (DBS)
- Small pilot and validation studies suggest
 - low false-positive rates
 - High-throughput feasibility
 - Unclear sensitivity (false-negative rate)
- Primary Screening Methods:

– Tandem mass spectrometry (MS/MS)

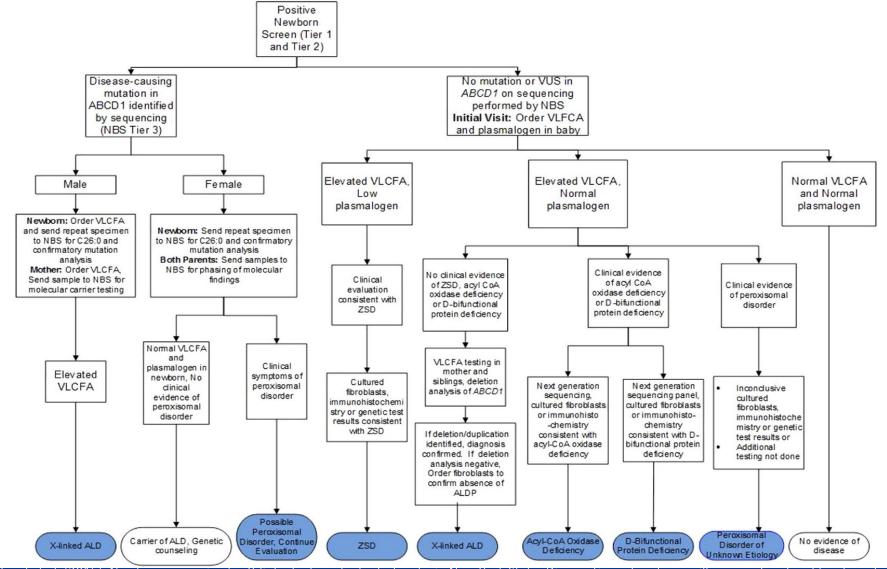
Current X-ALD Newborn Screening

- Legislative Approval:
 - NY, CT, and NJ State Newborn Screening–2013
 - NY NBS Live screening since December 2013
- States considering X-ALD screening:
 - CA Proposed legislation to mandate NBS for ALD moving forward, April 2014
 - MD proposed to add ALD in 2014, pending funds and state lab changes
- Mayo Clinic Comparative Effectiveness of Screening study (100,000 NBS from CA), *final results pending*.

(State NBS for ALD updates ongoing)

NY State NBS Program: "3-Tier" Screen for X-ALD

Dates: Dec 30, 2013 to present, >300,000 newborns screened


Tier - Screening Activity		Rate Definition	
TIER 1	MS/MS for C26:0 LPC	Re-test rate (same specimen)	
TIER 2	HPLC & MS/MS for C26:0 LPC	Repeat rate (independent specimen)	
 Mutation analysis of ABCD1 gene, in-house Referral also for confirmatory testing 			
(screening results removed; manuscript is in preparation)			

U Duke Clinical Research Institute

10

NY NBS Short-term Follow Up Algorithm: Tier 3 & Referral

B.H. Vogel et al. (2015). Newborn screening for X-linked adrenoleukodystrophy in New York State: Diagnostic protocol, surveillance protocol and treatment guidelines. *Molecular Genetics and Metabolism, in press*.

Establishing the X-ALD Diagnosis

Increased Very long-chain fatty acids

- Most important laboratory assay is VLCFA concentration in plasma
- X-ALD diagnosis ABCD1 mutations
 - DNA diagnostic test for X-ALD involving non-nested genomic amplification of the ABDC1 gene, followed by sequencing and analysis with fluorescence.
 - Affected X-ALD newborns may have known gene mutations from mutation analysis, OR gene deletions and other abnormities which require further genetic analysis – gene mutation analysis alone may not ID all cases

Establishing the X-ALD Diagnosis (cont')

Clinical Assessment

 Neuroimaging - Brain MRI/(& Loes severity scale for MRI) – always abnormal in neurologically symptomatic males

- Clinical Symptoms - Child Cerebral ALD (Boys)

- ADD symptoms, signs of dementia, difficulties understanding spoken language, progressive disturbance in behavior, coordination, handwriting, vision, other neurological disturbances.
- Primary adrenocortical insufficiency co-occurs in ~90% of Cerebral ALD (with additional diagnostic confirmation)

Asymptomatic

• May show ABCD1 mutations, but be asymptomatic in infancy and require follow-up and monitoring

Management of Presymptomatic X-ALD

- Ongoing follow up care for early detected, presymptomatic X-ALD patients to monitor for disease progression
- Management protocols of follow up care for X-ALD patients established
- Brain magnetic resonance imaging (MRI) has been found to be a reliable marker for disease progression/cerebral involvement
- Loes Score MRI disease severity rating established to inform progression and need for transplant
- Referral to endocrinologist specialists to monitor adrenal function

Primary Treatment Strategies

- Hematopoietic Stem Cell Transplantation (HSCT)
 - May reduce risk or progression of neurological degeneration in early stage CALD

Adrenal Cortisol Replacement therapy

- Necessary for adrenocortical insufficiency "Addison's disease" to prevent adrenal crisis
- No effect on neurological symptoms

Gene Therapy for X-ALD

- Not standard care, Experimental
- 2 successful case studies in France (2 7 yr old boys, early CALD), cerebral disease progression halted after 14-16 mos

5-year Survival for Childhood Cerebral X-ALD, With and Without Transplant

C-CALD (Historical Controls)	No Transplant (n=283)	Transplant
5-year survival	66%	
Deaths by 5 years (Mean age at death)	46% (12.3 years)	

C-CALD (Early stage)	No Transplant (n=30)	Transplant (n=19)
5-year survival	54%	9 5%
		** <i>p</i> =0.006

Decision Modeling Population Level Outcomes

- Decision Modeling...in progress
 - -Technical Expert Panel (TEP) assembled
 - -3 expert panel meetings scheduled

Decision Modeling Population Level Outcomes

TEP	Date	Objectives
TEP 1	14 APR 2015	 Determine natural history and epidemiology with usual clinical detection Discuss screening and diagnostic confirmation process Identify key outcomes of X-ALD Identify standard treatments and treatment effectiveness Review initial draft of decision tree model for X-ALD
TEP 2	14 MAY 2015	Review updated model structureReview probability inputs
TEP 3	11 JUN 2015	Review preliminary results

Decision Modeling Population Level Outcomes (*cont.*)

Next Steps:

- Develop/refine Decision Model Structure
- Translate key parameter inputs from evidence review
- Project population outcomes

Public Health System Impact Assessment for X-ALD

Association of Public Health Laboratories

www.aphl.org

PHSI Background

- The Secretary of HHS Advisory Committee on Heritable Disorders in Newborns and Children (ACHDNC) makes recommendations to the Secretary, HHS, about what conditions should be included in the RUSP
- These recommendations are based on
 - The certainty of net benefit
 - The feasibility and readiness of implementing comprehensive screening
- Feasibility and readiness is based, in part, on an assessment of the public health system impact

Aims/Goals

- Inform the ACHDNC
- Opportunity to
 - Understand the "real world" barriers and facilitators related to screening
 - Identify research gaps
 - Conduct a needs assessment
 - Evaluate opportunity costs
 - Share practices that can ultimately improve implementation

Guiding Philosopy

- All states can provide useful information about public health impact
- We need to provide useful, high-quality data to the ACHDNC within a short period of time
- We cannot burden state public health officials
- We need to provide information to states to facilitate the process
- This is a critical opportunity to assure that the ACHDNC is aware of issues at the state level

Progress

- Key informant interviews with state NBS programs that are screening or have mandates to screen
- Development of Fact Sheet for X-ALD Screening Methods
- Development of X-ALD public health system impact assessment survey

Next Steps

- Distribute survey to NBS program directors in all 50 states, DC and PR via email
- Period to complete: May 13 to June 17, 2015
- Educational X-ALD webinar on May 14 at 2 pm ET
- Report to ACHDNC: July/August 2015

Thank You!

Questions?

Note: CRW Presentations not for distribution. Material includes content for personal use only.

Presentation Contact:

Alex R. Kemper, MD, MPH, MS alex.kemper@duke.edu