

Improving the Efficiency of Newborn Screening from Collection to Test Results

Beth A. Tarini¹⁻², MD, MS and Amy L. Cochran³, PhD

With Mary Kleyn MS⁴ and Gabriel Zayas-Cabán^{5*} PhD

¹ Department of Pediatrics, University of Iowa

² Department of Pediatrics, University of Michigan

³ Department of Mathematics, University of Michigan

⁴ Michigan Department of Health and Human Services, Lansing, Michigan

⁵ Department of Industrial and Operations Engineering, University of Michigan

August 26, 2016 Advisory Committee on Heritable Disorders in Newborns and Children Washington, DC

Support provided by

Robert Wood Johnson Foundation

Improving the Efficiency of Newborn Screening from Collection to Test Results (#72453)

Support for this presentation was provided by the Robert Wood Johnson Foundation through the National Coordinating Center for Public Health Services and Systems Research

Research Team

Principle Investigator

Beth Tarini, MD, MS

Co-Investigators

Amy Cohn, PhD

Lisa Prosser, PhD

Gabriel Zayas-Caban, PhD

Consultants

David Bundy, MD, MPH

Amy Cochran, PhD

Marci Sontag, PhD

Project Managers

Dalton Simancek, BA

Norma-Jean Simon, MPH

Matthew Fillare, MPH

Research Team

Health Services Researchers Applied Mathematician Quality Improvement Expert Healthcare Operations Engineer Newborn Screening Researcher Health Economist

Norma-Jean Simon, MPH

Advisory Committee

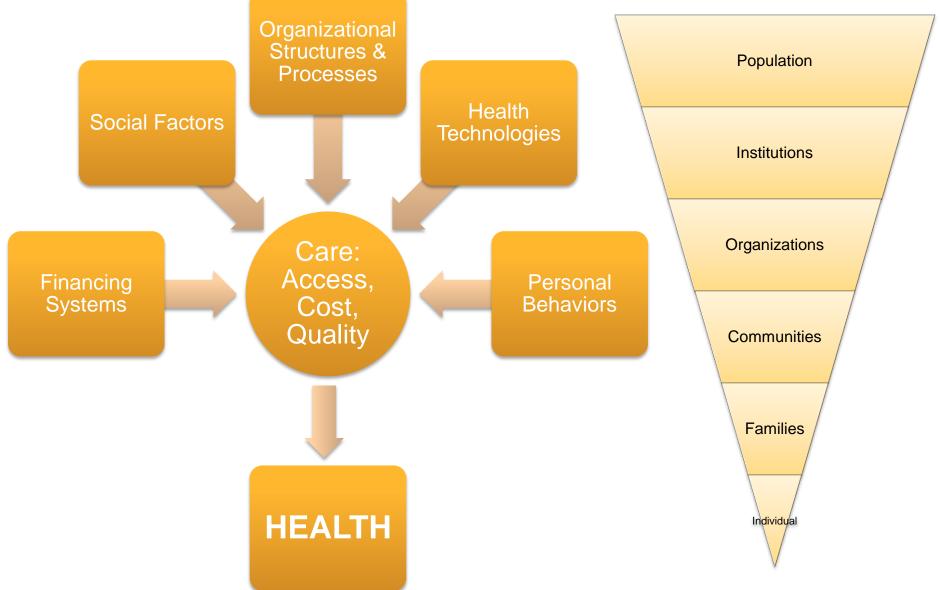
- Janice Bach, MS Manager, Genomics and Genetic Disorders Section, Michigan Department of Health
- Stanton Berberich, Phd Program Manager, Iowa NBS
- Amy Gaviglio, MS Minnesota NBS Follow-up Coordinator
- Carol Johnson Newborn Screening Follow-up Coordinator, Iowa NBS
- Mary Kleyn, MS NBS Epidemiologist, Michigan NBS
- Neil MacVicar Michigan Health and Hospital Association
- Jelili Ojodu, MPH NewSteps Director
- Susan Tanksley, Phd Lab Operations Director, Texas NBS
- Lois Turbett, MS, RN NBS Nurse Consultant, Michigan NBS

Goals Today

- Present project design and goals
- Review preliminary results
- Discuss next steps for project

NBS: The System

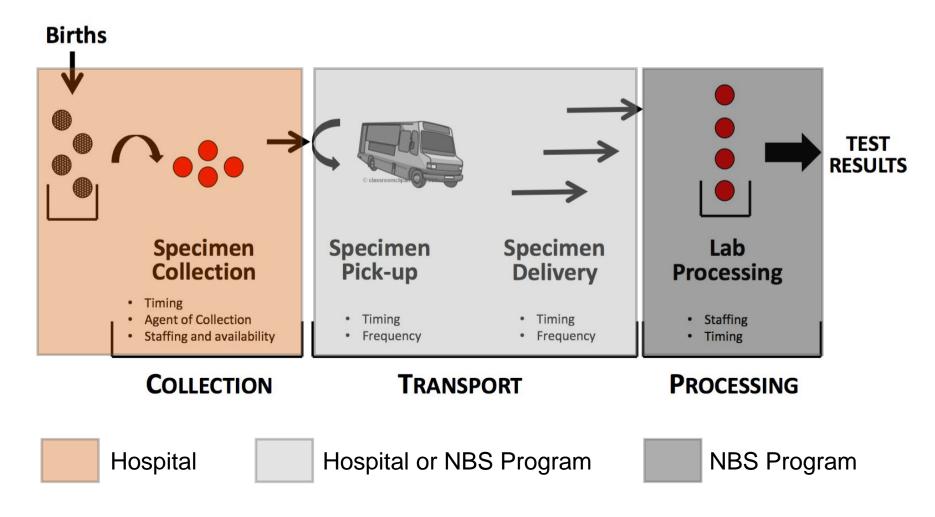
Complex process


- NBS requires coordinated and timely collaboration between multiple stakeholders
 - within and between clinical medicine and public health

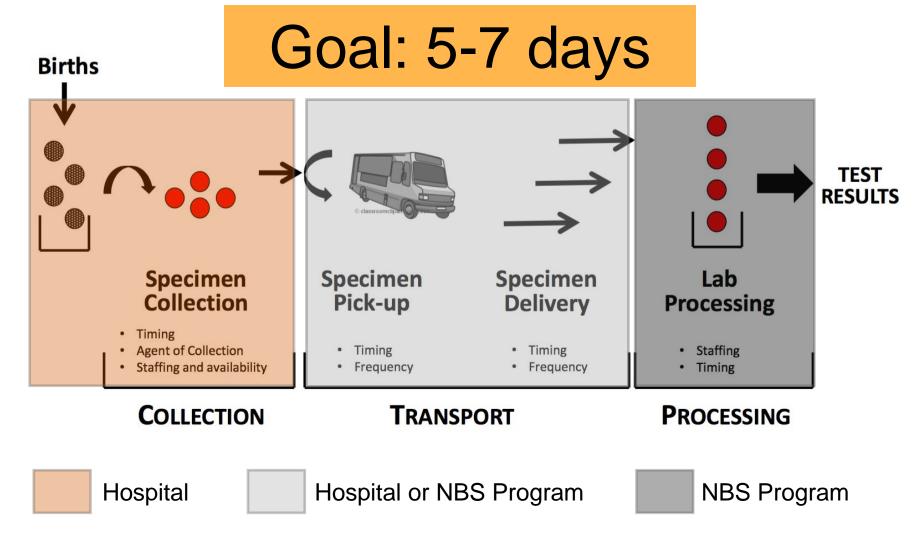
Different ways to organize and delivery NBS

- Each state program designs its own process
- NOTE: Different designs can be equally effective

Health Services Research



(Academy for Health Services Research and Health Policy, 2000)



General Steps of NBS Process: Collection, Transport, Lab

General Steps of NBS Process: Collection, Transport, Lab

Project Rationale

By taking a **broader perspective** of the process and performing a **systematic analysis**, we can **identify leverage points** where we can **potentially intervene** and **improve process efficiency**

from Patient Arrival at Hospital to NBS test results returned

Mother arrives at Hospital

0

۲

0

Project Goals

- Use innovative dynamic simulation modeling techniques to systematically identify potential process improvement strategies for reducing time from collection to test results
- Assess the trade-off between timeliness and cost for the strategies identified

Simulation Modeling

What is it?

 Statistical method for identifying steps in a state's NBS process that can be modified to improve timeliness

What are implications?

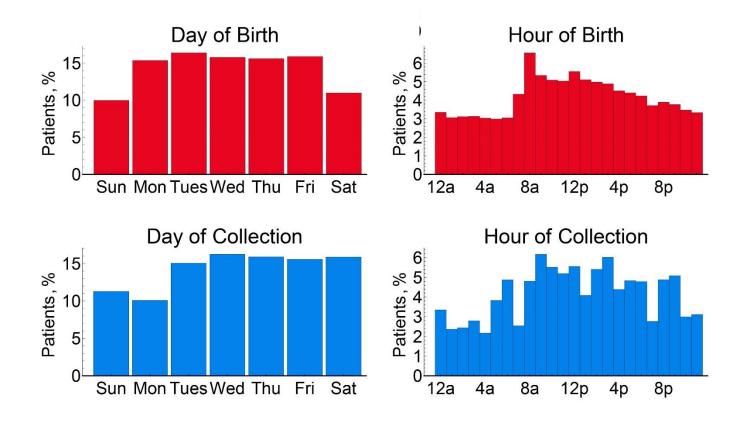
- Systematic and efficient method for assessing timeliness of a state's NBS process
- Can identify steps in process linked to significant change in timeliness (i.e., leverage points)
- Can be tailored to state's specific process (i.e., state specific procedures and data)

Early Challenges and Barriers to the Project

- NBS Process complexity
- Variability in organization and implementation
 - At program and hospital level
- Availability of necessary NBS program and hospital data
- What is the health outcome gain of <5 days?</p>

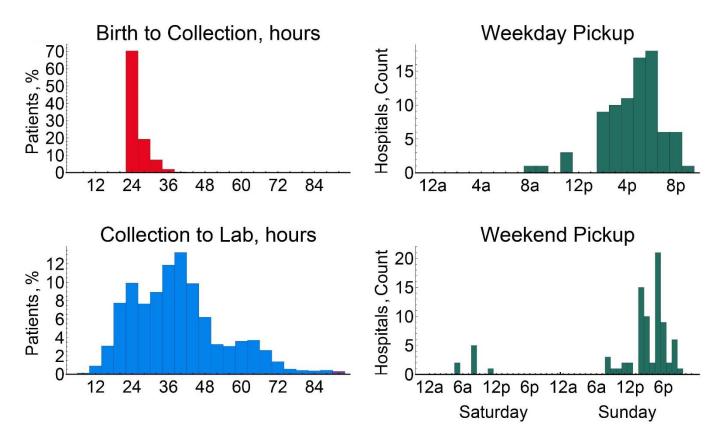
Preliminary Model Results

NBS Process: Birth To Lab Arrival



Data Source: Michigan Newborn Screening Program

- 94,770 NBS specimens
- 83 Michigan birthing hospitals
- April 2014 to March 2015
- Newborns from neonatal intensive care unit (NICU) or a special care unit were not included
- Hospital ID; time and date of birth, collection, and receipt of lab arrival; mileage from hospital to lab; and pickup schedules by hospital



Characteristics: Births, Collection, Specimen Pickup

Characteristics: Births, Collection, Pickup

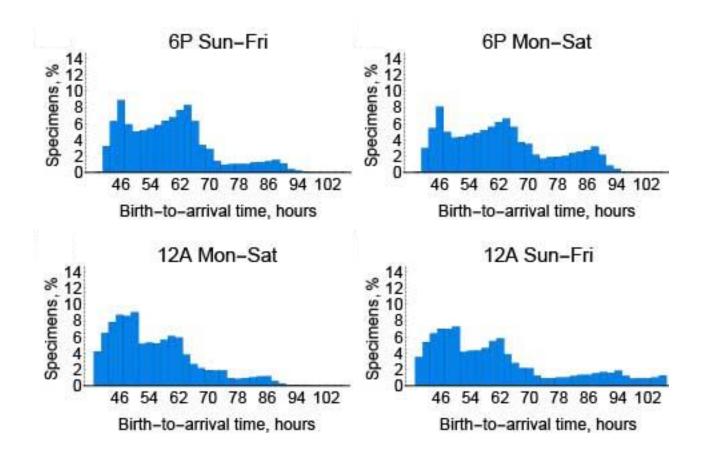
- Over 99% of specimens are collected within 36 hours of birth
- Most NBS specimens in Michigan are transported by state-funded couriers (UPS, Quest) from the hospital and arrive at the state lab on the following day

Regression ^a: **Collection to lab arrival (hours)**

Model Term	Estimate	Std. Error	Statistic	Sig.
Intercept	43.6	1.2	35.7	<0.001
Hospital Volume	0.0	0.0	0.4	0.690
Sunday Collection	-9.1	0.2	-47.8	<0.001
Monday Collection	-11.4	0.2	-58.0	<0.001
Tuesday Collection	-11.9	0.2	-67.8	<0.001
Wednesday Collection	-10.8	0.2	-62.9	<0.001
Thursday Collection	-10.0	0.2	-57.8	<0.001
Friday Collection	2.7	0.2	15.6	<0.001
Saturday Collection	0 ^b			
Early Morning Collection	-3.4	0.2	-21.3	<0.001
Morning Collection	-3.1	0.1	-22.5	<0.001
Afternoon Collection	0.9	0.1	6.6	<0.001
Evening Collection	0 ^b			
Mileage to Laboratory	0.035	0.005	6.6	<0.001
Residual Variance	225.2	1.0	217.6	<0.001
Between-Hospital Variance	25.8	4.2	6.2	<0.001

^a Linear mixed effects regression model; ^b Term is redundant.

Could collection timing be important to NBS timeliness through its relation to lab hours and courier schedules?


Simulated:

- Patterns of birth (including uncertainty)
- Birth to collection (including uncertainty) with tests ordered after 24 hours of birth
- Collection to pickup, allowing at least 4 hours of drying
- A fixed transit time of 10 hours [†]
- Processing starts immediately during laboratory hours [‡]
- Varied laboratory hours and varied pickup schedules

⁺ In Michigan, a typical pickup time is 6P and specimens arrive around 3-4A. Hospitals with their own courier have shorter transit times.

[‡] Michigan lab hours: Mon–Fri 7A–5P, Sat 6:30A–4P

Rank	Pickup times	Mean (h)	SD (h)	T>48 h (%)	T>60 h (%)
#1	12A Mon-Sat	55.2	11.4	68.0	30.2
#2	9P Sun-Fri	55.4	11.6	65.7	32.0
#3	12A Wed-Mon	57.2	12.4	71.4	38.6
#4	12A Tue-Sun	57.6	12.7	71.7	39.4
#5	9P Tue-Sun	58.0	13.2	69.5	40.6
#18	6P Sun-Fri	59.1	11.8	78.2	44.6
	Minimum	55.2	11.2	65.7	30.2

- T is simulated time between birth and receipt of lab arrival
- 35 pickup schedules (six days at 12A, 6A, 12P, 6P, or 9P)
- Schedules are ranked on metrics
- Laboratory hours fixed (Mon–Fri 7A–5P, Sat 6:30A–4P).

Laboratory hours	Mean (h)	SD (h)	T>48 h (%)	T>60 h (%)
7A-5P Mon-Fri, 6:30A-4P Sat	55.4	11.5	66.0	32.1
7A-5P Mon-Fri, 6:30A-4P Sat-Sun	51.7	7.7	59.0	19.2
7A-5P Mon-Fri	63.0	19.6	72.3	44.9
7A-5P Tue-Sat, 6:30A-4P Sun	54.6	11.4	63.0	28.9
7A-5P Mon-Fri, 6:30A-4P Sun	55.5	11.8	65.6	31.7
5A-3P Mon-Fri, 5A-2:30P Sat	55.9	11.7	69.5	33.5
9A-7P Mon-Fri, 9A-6:30P Sat	55.3	11.5	67.2	30.7

• For each laboratory schedule, assumed courier picked up specimens 10 hours prior to when the laboratory opens each day.

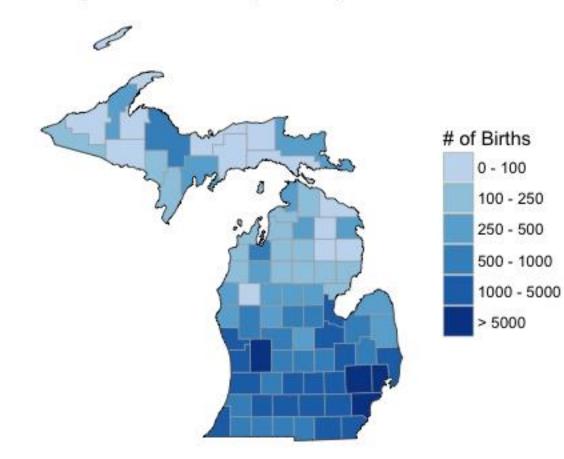
Conclusions: Data analysis

- Time from collection to receipt of lab arrival is an important bottleneck in the NBS process
- Pickup schedules and lab hours may be adjusted to improve NBS timeliness, by accounting for
 - Patterns of births (more on weekdays, in the morning)
 - When laboratory is open
- Simulation can estimate *a priori* impact on timeliness:
 - E.g., switching pickup schedules from 6P Sun-Fri to 9P Sun-Fri is estimated to have 12.6% fewer specimens received by the state laboratory 60 hours after birth
- Considerations: cost of changing courier or lab schedules, contacting primary care provider, lab processing

Next Steps

 Refine model with additional data from surveys from other hospitals and state NBS programs

Collect data on costs


Thank you.

Questions?

Michigan Live Births by County - 2014

